This file is indexed.

/usr/share/axiom-20170501/src/algebra/ASP28.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
)abbrev domain ASP28 Asp28
++ Author: Mike Dewar
++ Date Created: 21 March 1994
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp28} produces Fortran for Type 28 ASPs, used in NAG routine 
++f02fjf, for example:
++
++\tab{5}SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)\br
++\tab{5}DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK)\br
++\tab{5}INTEGER N,LIWORK,IFLAG,LRWORK\br
++\tab{5}W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00\br
++\tab{4}&2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554\br
++\tab{4}&0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365\br
++\tab{4}&3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z(\br
++\tab{4}&8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0.\br
++\tab{4}&2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050\br
++\tab{4}&8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z\br
++\tab{4}&(1)\br
++\tab{5}W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010\br
++\tab{4}&94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136\br
++\tab{4}&72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D\br
++\tab{4}&0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8)\br
++\tab{4}&)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532\br
++\tab{4}&5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056\br
++\tab{4}&67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1\br
++\tab{4}&))\br
++\tab{5}W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0\br
++\tab{4}&06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033\br
++\tab{4}&305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502\br
++\tab{4}&9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D\br
++\tab{4}&0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(-\br
++\tab{4}&0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961\br
++\tab{4}&32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917\br
++\tab{4}&D0*Z(1))\br
++\tab{5}W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0.\br
++\tab{4}&01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688\br
++\tab{4}&97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315\br
++\tab{4}&6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z\br
++\tab{4}&(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0\br
++\tab{4}&.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802\br
++\tab{4}&68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0*\br
++\tab{4}&Z(1)\br
++\tab{5}W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+(\br
++\tab{4}&-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014\br
++\tab{4}&45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966\br
++\tab{4}&3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352\br
++\tab{4}&4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6))\br
++\tab{4}&+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718\br
++\tab{4}&5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851\br
++\tab{4}&6D0*Z(1)\br
++\tab{5}W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048\br
++\tab{4}&26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323\br
++\tab{4}&319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730\br
++\tab{4}&01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z(\br
++\tab{4}&8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583\br
++\tab{4}&09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700\br
++\tab{4}&4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1)\br
++\tab{5}W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0\br
++\tab{4}&2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843\br
++\tab{4}&8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017\br
++\tab{4}&95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z(\br
++\tab{4}&8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136\br
++\tab{4}&2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015\br
++\tab{4}&423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1\br
++\tab{4}&)\br
++\tab{5}W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05\br
++\tab{4}&581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338\br
++\tab{4}&45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869\br
++\tab{4}&52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8)\br
++\tab{4}&+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056\br
++\tab{4}&1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544\br
++\tab{4}&359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z(\br
++\tab{4}&1)\br
++\tab{5}W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(-\br
++\tab{4}&0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173\br
++\tab{4}&3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441\br
++\tab{4}&3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8\br
++\tab{4}&))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23\br
++\tab{4}&11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773\br
++\tab{4}&9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z(\br
++\tab{4}&1)\br
++\tab{5}W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0\br
++\tab{4}&.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246\br
++\tab{4}&3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609\br
++\tab{4}&48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8\br
++\tab{4}&))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032\br
++\tab{4}&98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688\br
++\tab{4}&615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z(\br
++\tab{4}&1)\br
++\tab{5}W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0\br
++\tab{4}&7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830\br
++\tab{4}&9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D\br
++\tab{4}&0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8)\br
++\tab{4}&)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493\br
++\tab{4}&1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054\br
++\tab{4}&65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1)\br
++\tab{5}W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(-\br
++\tab{4}&0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162\br
++\tab{4}&3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889\br
++\tab{4}&45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8\br
++\tab{4}&)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0.\br
++\tab{4}&01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226\br
++\tab{4}&501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763\br
++\tab{4}&75D0*Z(1)\br
++\tab{5}W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+(\br
++\tab{4}&-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169\br
++\tab{4}&742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453\br
++\tab{4}&5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z(\br
++\tab{4}&8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05\br
++\tab{4}&468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277\br
++\tab{4}&35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0\br
++\tab{4}&*Z(1)\br
++\tab{5}W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15))\br
++\tab{4}&+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236\br
++\tab{4}&679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278\br
++\tab{4}&87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D\br
++\tab{4}&0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0\br
++\tab{4}&.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660\br
++\tab{4}&7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903\br
++\tab{4}&02D0*Z(1)\br
++\tab{5}W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0\br
++\tab{4}&.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325\br
++\tab{4}&555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556\br
++\tab{4}&9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D\br
++\tab{4}&0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0.\br
++\tab{4}&0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122\br
++\tab{4}&10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z\br
++\tab{4}&(1)\br
++\tab{5}W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0.\br
++\tab{4}&1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669\br
++\tab{4}&47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114\br
++\tab{4}&625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z\br
++\tab{4}&(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0\br
++\tab{4}&07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739\br
++\tab{4}&00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0*\br
++\tab{4}&Z(1)\br
++\tab{5}RETURN\br
++\tab{5}END\br

Asp28(name) : SIG == CODE where
  name : Symbol

  FST    ==> FortranScalarType
  FT     ==> FortranType
  SYMTAB ==> SymbolTable
  FC     ==> FortranCode
  PI     ==> PositiveInteger
  RSFC   ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
  EXPR   ==> Expression
  MFLOAT ==> MachineFloat
  VEC    ==> Vector
  UFST   ==> Union(fst:FST,void:"void")
  MAT    ==> Matrix

  SIG ==> FortranMatrixCategory 

  CODE ==> add

    real : UFST := ["real"::FST]$UFST

    syms : SYMTAB := empty()

    declare!(IFLAG,fortranInteger(),syms)$SYMTAB

    declare!(N,fortranInteger(),syms)$SYMTAB

    declare!(LRWORK,fortranInteger(),syms)$SYMTAB

    declare!(LIWORK,fortranInteger(),syms)$SYMTAB

    xType : FT := construct(real,[N],false)$FT

    declare!(Z,xType,syms)$SYMTAB

    declare!(W,xType,syms)$SYMTAB

    rType : FT := construct(real,[LRWORK],false)$FT

    declare!(RWORK,rType,syms)$SYMTAB

    iType : FT := construct(real,[LIWORK],false)$FT

    declare!(IWORK,rType,syms)$SYMTAB

    Rep := FortranProgram(name,["void"]$UFST,
                          [IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK],syms)

    -- To help the poor old compiler!
    localCoerce(u:Symbol):EXPR(MFLOAT) == coerce(u)$EXPR(MFLOAT)

    coerce (u:MAT MFLOAT):$ ==
      Zs: Symbol := Z
      code : List FC
      r: List EXPR MFLOAT
      r := ["+"/[u(j,i)*localCoerce(elt(Zs,[i::OutputForm])$Symbol)_
                         for i in 1..ncols(u)$MAT(MFLOAT)::PI]_
                         for j in 1..nrows(u)$MAT(MFLOAT)::PI]
      code := [assign(W@Symbol,vector(r)$VEC(EXPR MFLOAT)),returns()]$List(FC)
      code::$

    coerce(c:FortranCode):$ == coerce(c)$Rep

    coerce(r:RSFC):$ == coerce(r)$Rep

    coerce(c:List FortranCode):$ == coerce(c)$Rep

    coerce(u:$):OutputForm == coerce(u)$Rep

    outputAsFortran(u):Void ==
      p := checkPrecision()$NAGLinkSupportPackage
      outputAsFortran(u)$Rep
      p => restorePrecision()$NAGLinkSupportPackage