This file is indexed.

/usr/share/axiom-20170501/src/algebra/ASP31.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
)abbrev domain ASP31 Asp31
++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
++ Date Created: Mar 1993
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp31} produces Fortran for Type 31 ASPs, needed for NAG routine 
++d02ejf, for example:
++
++\tab{5}SUBROUTINE PEDERV(X,Y,PW)\br
++\tab{5}DOUBLE PRECISION X,Y(*)\br
++\tab{5}DOUBLE PRECISION PW(3,3)\br
++\tab{5}PW(1,1)=-0.03999999999999999D0\br
++\tab{5}PW(1,2)=10000.0D0*Y(3)\br
++\tab{5}PW(1,3)=10000.0D0*Y(2)\br
++\tab{5}PW(2,1)=0.03999999999999999D0\br
++\tab{5}PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2))\br
++\tab{5}PW(2,3)=-10000.0D0*Y(2)\br
++\tab{5}PW(3,1)=0.0D0\br
++\tab{5}PW(3,2)=60000000.0D0*Y(2)\br
++\tab{5}PW(3,3)=0.0D0\br
++\tab{5}RETURN\br
++\tab{5}END

Asp31(name) : SIG == CODE where
  name : Symbol

  O      ==> OutputForm
  FST    ==> FortranScalarType
  UFST   ==> Union(fst:FST,void:"void")
  MFLOAT ==> MachineFloat
  FEXPR  ==> FortranExpression(['X],['Y],MFLOAT)
  FT     ==> FortranType
  FC     ==> FortranCode
  SYMTAB ==> SymbolTable
  RSFC   ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
  FRAC   ==> Fraction
  POLY   ==> Polynomial
  EXPR   ==> Expression
  INT    ==> Integer
  FLOAT  ==> Float
  VEC    ==> Vector
  MAT    ==> Matrix
  VF2    ==> VectorFunctions2
  MF2    ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR,
                   EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT)

  SIG ==> FortranVectorFunctionCategory with

    coerce : VEC FEXPR -> $
      ++coerce(f) takes objects from the appropriate instantiation of
      ++\spadtype{FortranExpression} and turns them into an ASP.

  CODE ==> add

    real : UFST := ["real"::FST]$UFST

    syms : SYMTAB := empty()

    declare!(X,fortranReal(),syms)$SYMTAB

    yType : FT := construct(real,["*"::Symbol],false)$FT

    declare!(Y,yType,syms)$SYMTAB

    Rep := FortranProgram(name,["void"]$UFST,[X,Y,PW],syms)

    -- To help the poor old compiler!
    fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR

    localAssign(s:Symbol,j:MAT FEXPR):FC ==
      j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2
      assign(s,j')$FC

    makeXList(n:Integer):List(Symbol) ==
      j:Integer
      y:Symbol := Y::Symbol
      p:List(Symbol) := []
      for j in 1 .. n repeat p:= cons(subscript(y,[j::OutputForm])$Symbol,p)
      p:= reverse(p)

    coerce(u:VEC FEXPR):$ == 
      dimension := #u::Polynomial Integer
      locals : SYMTAB := empty()
      declare!(PW,[real,[dimension,dimension],false]$FT,locals)$SYMTAB
      n:Integer := maxIndex(u)$VEC(FEXPR)
      p:List(Symbol) := makeXList(n)
      jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_
                                     Symbol,FEXPR ,VEC FEXPR,List(Symbol))
      code : List FC := [localAssign(PW,jac),returns()$FC]$List(FC)
      ([locals,code]$RSFC)::$

    retract(u:VEC FRAC POLY INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
      v::$

    retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC FRAC POLY FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=_
        map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC EXPR INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
      v::$

    retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC EXPR FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC POLY INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
      v::$

    retractIfCan(u:VEC POLY INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC POLY FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    coerce(c:List FC):$ == coerce(c)$Rep

    coerce(r:RSFC):$ == coerce(r)$Rep

    coerce(c:FC):$ == coerce(c)$Rep

    coerce(u:$):O == coerce(u)$Rep

    outputAsFortran(u):Void ==
      p := checkPrecision()$NAGLinkSupportPackage
      outputAsFortran(u)$Rep
      p => restorePrecision()$NAGLinkSupportPackage