/usr/share/axiom-20170501/src/algebra/ASP31.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | )abbrev domain ASP31 Asp31
++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
++ Date Created: Mar 1993
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp31} produces Fortran for Type 31 ASPs, needed for NAG routine
++d02ejf, for example:
++
++\tab{5}SUBROUTINE PEDERV(X,Y,PW)\br
++\tab{5}DOUBLE PRECISION X,Y(*)\br
++\tab{5}DOUBLE PRECISION PW(3,3)\br
++\tab{5}PW(1,1)=-0.03999999999999999D0\br
++\tab{5}PW(1,2)=10000.0D0*Y(3)\br
++\tab{5}PW(1,3)=10000.0D0*Y(2)\br
++\tab{5}PW(2,1)=0.03999999999999999D0\br
++\tab{5}PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2))\br
++\tab{5}PW(2,3)=-10000.0D0*Y(2)\br
++\tab{5}PW(3,1)=0.0D0\br
++\tab{5}PW(3,2)=60000000.0D0*Y(2)\br
++\tab{5}PW(3,3)=0.0D0\br
++\tab{5}RETURN\br
++\tab{5}END
Asp31(name) : SIG == CODE where
name : Symbol
O ==> OutputForm
FST ==> FortranScalarType
UFST ==> Union(fst:FST,void:"void")
MFLOAT ==> MachineFloat
FEXPR ==> FortranExpression(['X],['Y],MFLOAT)
FT ==> FortranType
FC ==> FortranCode
SYMTAB ==> SymbolTable
RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
FRAC ==> Fraction
POLY ==> Polynomial
EXPR ==> Expression
INT ==> Integer
FLOAT ==> Float
VEC ==> Vector
MAT ==> Matrix
VF2 ==> VectorFunctions2
MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR,
EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT)
SIG ==> FortranVectorFunctionCategory with
coerce : VEC FEXPR -> $
++coerce(f) takes objects from the appropriate instantiation of
++\spadtype{FortranExpression} and turns them into an ASP.
CODE ==> add
real : UFST := ["real"::FST]$UFST
syms : SYMTAB := empty()
declare!(X,fortranReal(),syms)$SYMTAB
yType : FT := construct(real,["*"::Symbol],false)$FT
declare!(Y,yType,syms)$SYMTAB
Rep := FortranProgram(name,["void"]$UFST,[X,Y,PW],syms)
-- To help the poor old compiler!
fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
localAssign(s:Symbol,j:MAT FEXPR):FC ==
j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2
assign(s,j')$FC
makeXList(n:Integer):List(Symbol) ==
j:Integer
y:Symbol := Y::Symbol
p:List(Symbol) := []
for j in 1 .. n repeat p:= cons(subscript(y,[j::OutputForm])$Symbol,p)
p:= reverse(p)
coerce(u:VEC FEXPR):$ ==
dimension := #u::Polynomial Integer
locals : SYMTAB := empty()
declare!(PW,[real,[dimension,dimension],false]$FT,locals)$SYMTAB
n:Integer := maxIndex(u)$VEC(FEXPR)
p:List(Symbol) := makeXList(n)
jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_
Symbol,FEXPR ,VEC FEXPR,List(Symbol))
code : List FC := [localAssign(PW,jac),returns()$FC]$List(FC)
([locals,code]$RSFC)::$
retract(u:VEC FRAC POLY INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
v::$
retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC FRAC POLY FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
v::$
retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=_
map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC EXPR INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
v::$
retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC EXPR FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
v::$
retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC POLY INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
v::$
retractIfCan(u:VEC POLY INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC POLY FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
v::$
retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
coerce(c:List FC):$ == coerce(c)$Rep
coerce(r:RSFC):$ == coerce(r)$Rep
coerce(c:FC):$ == coerce(c)$Rep
coerce(u:$):O == coerce(u)$Rep
outputAsFortran(u):Void ==
p := checkPrecision()$NAGLinkSupportPackage
outputAsFortran(u)$Rep
p => restorePrecision()$NAGLinkSupportPackage
|