/usr/share/axiom-20170501/src/algebra/ASP35.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | )abbrev domain ASP35 Asp35
++ Author: Mike Dewar, Godfrey Nolan, Grant Keady
++ Date Created: Mar 1993
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp35} produces Fortran for Type 35 ASPs, needed for NAG routines
++c05pbf, c05pcf, for example:
++
++\tab{5}SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)\br
++\tab{5}DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)\br
++\tab{5}INTEGER LDFJAC,N,IFLAG\br
++\tab{5}IF(IFLAG.EQ.1)THEN\br
++\tab{7}FVEC(1)=(-1.0D0*X(2))+X(1)\br
++\tab{7}FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2)\br
++\tab{7}FVEC(3)=3.0D0*X(3)\br
++\tab{5}ELSEIF(IFLAG.EQ.2)THEN\br
++\tab{7}FJAC(1,1)=1.0D0\br
++\tab{7}FJAC(1,2)=-1.0D0\br
++\tab{7}FJAC(1,3)=0.0D0\br
++\tab{7}FJAC(2,1)=0.0D0\br
++\tab{7}FJAC(2,2)=2.0D0\br
++\tab{7}FJAC(2,3)=-1.0D0\br
++\tab{7}FJAC(3,1)=0.0D0\br
++\tab{7}FJAC(3,2)=0.0D0\br
++\tab{7}FJAC(3,3)=3.0D0\br
++\tab{5}ENDIF\br
++\tab{5}END
Asp35(name) : SIG == CODE where
name : Symbol
FST ==> FortranScalarType
FT ==> FortranType
UFST ==> Union(fst:FST,void:"void")
SYMTAB ==> SymbolTable
FC ==> FortranCode
PI ==> PositiveInteger
RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
FRAC ==> Fraction
POLY ==> Polynomial
EXPR ==> Expression
INT ==> Integer
FLOAT ==> Float
VEC ==> Vector
MAT ==> Matrix
VF2 ==> VectorFunctions2
MFLOAT ==> MachineFloat
FEXPR ==> FortranExpression([],['X],MFLOAT)
MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR,
EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT)
SWU ==> Union(I:Expression Integer,F:Expression Float,
CF:Expression Complex Float,switch:Switch)
SIG ==> FortranVectorFunctionCategory with
coerce : VEC FEXPR -> $
++coerce(f) takes objects from the appropriate instantiation of
++\spadtype{FortranExpression} and turns them into an ASP.
CODE ==> add
real : UFST := ["real"::FST]$UFST
syms : SYMTAB := empty()$SYMTAB
declare!(N,fortranInteger(),syms)$SYMTAB
xType : FT := construct(real,[N],false)$FT
declare!(X,xType,syms)$SYMTAB
declare!(FVEC,xType,syms)$SYMTAB
declare!(LDFJAC,fortranInteger(),syms)$SYMTAB
jType : FT := construct(real,[LDFJAC,N],false)$FT
declare!(FJAC,jType,syms)$SYMTAB
declare!(IFLAG,fortranInteger(),syms)$SYMTAB
Rep := FortranProgram(name,["void"]$UFST,[N,X,FVEC,FJAC,LDFJAC,IFLAG],syms)
coerce(u:$):OutputForm == coerce(u)$Rep
makeXList(n:Integer):List(Symbol) ==
x:Symbol := X::Symbol
[subscript(x,[j::OutputForm])$Symbol for j in 1..n]
fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
localAssign1(s:Symbol,j:MAT FEXPR):FC ==
j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2
assign(s,j')$FC
localAssign2(s:Symbol,j:VEC FEXPR):FC ==
j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
assign(s,j')$FC
coerce(u:VEC FEXPR):$ ==
n:Integer := maxIndex(u)
p:List(Symbol) := makeXList(n)
jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_
Symbol,FEXPR,VEC FEXPR,List(Symbol))
assf:FC := localAssign2(FVEC,u)
assj:FC := localAssign1(FJAC,jac)
iflag:SWU := [IFLAG@Symbol::EXPR(INT)]$SWU
sw1:Switch := EQ(iflag,[1::EXPR(INT)]$SWU)
sw2:Switch := EQ(iflag,[2::EXPR(INT)]$SWU)
cond(sw1,assf,cond(sw2,assj)$FC)$FC::$
coerce(c:List FC):$ == coerce(c)$Rep
coerce(r:RSFC):$ == coerce(r)$Rep
coerce(c:FC):$ == coerce(c)$Rep
outputAsFortran(u):Void ==
p := checkPrecision()$NAGLinkSupportPackage
outputAsFortran(u)$Rep
p => restorePrecision()$NAGLinkSupportPackage
retract(u:VEC FRAC POLY INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
v::$
retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC FRAC POLY FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
v::$
retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=_
map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC EXPR INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
v::$
retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC EXPR FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
v::$
retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC POLY INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
v::$
retractIfCan(u:VEC POLY INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC POLY FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
v::$
retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
|