/usr/share/axiom-20170501/src/algebra/ASP41.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | )abbrev domain ASP41 Asp41
++ Author: Mike Dewar, Godfrey Nolan
++ Date Created:
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp41} produces Fortran for Type 41 ASPs, needed for NAG
++routines d02raf and d02saf in particular. These ASPs are in fact
++three Fortran routines which return a vector of functions, and their
++derivatives wrt Y(i) and also a continuation parameter EPS, for example:
++
++\tab{5}SUBROUTINE FCN(X,EPS,Y,F,N)\br
++\tab{5}DOUBLE PRECISION EPS,F(N),X,Y(N)\br
++\tab{5}INTEGER N\br
++\tab{5}F(1)=Y(2)\br
++\tab{5}F(2)=Y(3)\br
++\tab{5}F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS)\br
++\tab{5}RETURN\br
++\tab{5}END\br
++\tab{5}SUBROUTINE JACOBF(X,EPS,Y,F,N)\br
++\tab{5}DOUBLE PRECISION EPS,F(N,N),X,Y(N)\br
++\tab{5}INTEGER N\br
++\tab{5}F(1,1)=0.0D0\br
++\tab{5}F(1,2)=1.0D0\br
++\tab{5}F(1,3)=0.0D0\br
++\tab{5}F(2,1)=0.0D0\br
++\tab{5}F(2,2)=0.0D0\br
++\tab{5}F(2,3)=1.0D0\br
++\tab{5}F(3,1)=-1.0D0*Y(3)\br
++\tab{5}F(3,2)=4.0D0*EPS*Y(2)\br
++\tab{5}F(3,3)=-1.0D0*Y(1)\br
++\tab{5}RETURN\br
++\tab{5}END\br
++\tab{5}SUBROUTINE JACEPS(X,EPS,Y,F,N)\br
++\tab{5}DOUBLE PRECISION EPS,F(N),X,Y(N)\br
++\tab{5}INTEGER N\br
++\tab{5}F(1)=0.0D0\br
++\tab{5}F(2)=0.0D0\br
++\tab{5}F(3)=2.0D0*Y(2)**2-2.0D0\br
++\tab{5}RETURN\br
++\tab{5}END
Asp41(nameOne,nameTwo,nameThree) : SIG == CODE where
nameOne : Symbol
nameTwo : Symbol
nameThree : Symbol
D ==> differentiate
FST ==> FortranScalarType
UFST ==> Union(fst:FST,void:"void")
FT ==> FortranType
FC ==> FortranCode
SYMTAB ==> SymbolTable
RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
FRAC ==> Fraction
POLY ==> Polynomial
EXPR ==> Expression
INT ==> Integer
FLOAT ==> Float
VEC ==> Vector
VF2 ==> VectorFunctions2
MFLOAT ==> MachineFloat
FEXPR ==> FortranExpression(['X,'EPS],['Y],MFLOAT)
S ==> Symbol
MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,
EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT)
SIG ==> FortranVectorFunctionCategory with
coerce : VEC FEXPR -> $
++coerce(f) takes objects from the appropriate instantiation of
++\spadtype{FortranExpression} and turns them into an ASP.
CODE ==> add
real : UFST := ["real"::FST]$UFST
symOne : SYMTAB := empty()$SYMTAB
declare!(N,fortranInteger(),symOne)$SYMTAB
declare!(X,fortranReal(),symOne)$SYMTAB
declare!(EPS,fortranReal(),symOne)$SYMTAB
yType : FT := construct(real,[N],false)$FT
declare!(Y,yType,symOne)$SYMTAB
declare!(F,yType,symOne)$SYMTAB
symTwo : SYMTAB := empty()$SYMTAB
declare!(N,fortranInteger(),symTwo)$SYMTAB
declare!(X,fortranReal(),symTwo)$SYMTAB
declare!(EPS,fortranReal(),symTwo)$SYMTAB
declare!(Y,yType,symTwo)$SYMTAB
fType : FT := construct(real,[N,N],false)$FT
declare!(F,fType,symTwo)$SYMTAB
symThree : SYMTAB := empty()$SYMTAB
declare!(N,fortranInteger(),symThree)$SYMTAB
declare!(X,fortranReal(),symThree)$SYMTAB
declare!(EPS,fortranReal(),symThree)$SYMTAB
declare!(Y,yType,symThree)$SYMTAB
declare!(F,yType,symThree)$SYMTAB
R1:=FortranProgram(nameOne,["void"]$UFST,[X,EPS,Y,F,N],symOne)
R2:=FortranProgram(nameTwo,["void"]$UFST,[X,EPS,Y,F,N],symTwo)
R3:=FortranProgram(nameThree,["void"]$UFST,[X,EPS,Y,F,N],symThree)
Rep := Record(f:R1,fJacob:R2,eJacob:R3)
Fsym:Symbol:=coerce "F"
fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
localAssign1(s:S,j:Matrix FEXPR):FC ==
j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2
assign(s,j')$FC
localAssign2(s:S,j:VEC FEXPR):FC ==
j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
assign(s,j')$FC
makeCodeOne(u:VEC FEXPR):FortranCode ==
-- simple assign
localAssign2(Fsym,u)
makeCodeThree(u:VEC FEXPR):FortranCode ==
-- compute jacobian wrt to eps
jacEps:VEC FEXPR := [D(v,EPS) for v in entries(u)]$VEC(FEXPR)
makeCodeOne(jacEps)
makeYList(n:Integer):List(Symbol) ==
j:Integer
y:Symbol := Y::Symbol
p:List(Symbol) := []
[subscript(y,[j::OutputForm])$Symbol for j in 1..n]
makeCodeTwo(u:VEC FEXPR):FortranCode ==
-- compute jacobian wrt to f
n:Integer := maxIndex(u)$VEC(FEXPR)
p:List(Symbol) := makeYList(n)
jac:Matrix(FEXPR) := _
jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
localAssign1(Fsym,jac)
coerce(u:VEC FEXPR):$ ==
aF:FortranCode := makeCodeOne(u)
bF:FortranCode := makeCodeTwo(u)
cF:FortranCode := makeCodeThree(u)
-- add returns() to complete subroutines
aLF:List(FortranCode) := [aF,returns()$FortranCode]$List(FortranCode)
bLF:List(FortranCode) := [bF,returns()$FortranCode]$List(FortranCode)
cLF:List(FortranCode) := [cF,returns()$FortranCode]$List(FortranCode)
[coerce(aLF)$R1,coerce(bLF)$R2,coerce(cLF)$R3]
coerce(u:$):OutputForm ==
bracket commaSeparate
[nameOne::OutputForm,nameTwo::OutputForm,nameThree::OutputForm]
outputAsFortran(u:$):Void ==
p := checkPrecision()$NAGLinkSupportPackage
outputAsFortran elt(u,f)$Rep
outputAsFortran elt(u,fJacob)$Rep
outputAsFortran elt(u,eJacob)$Rep
p => restorePrecision()$NAGLinkSupportPackage
retract(u:VEC FRAC POLY INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
v::$
retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC FRAC POLY FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
v::$
retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=_
map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC EXPR INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
v::$
retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC EXPR FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
v::$
retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC POLY INT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
v::$
retractIfCan(u:VEC POLY INT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
retract(u:VEC POLY FLOAT):$ ==
v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
v::$
retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
v case "failed" => "failed"
(v::VEC FEXPR)::$
|