/usr/share/axiom-20170501/src/algebra/ASP49.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | )abbrev domain ASP49 Asp49
++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
++ Date Created: Mar 1993
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp49} produces Fortran for Type 49 ASPs, needed for NAG routines
++e04dgf, e04ucf, for example:
++
++\tab{5}SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)\br
++\tab{5}DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*)\br
++\tab{5}INTEGER N,IUSER(*),MODE,NSTATE\br
++\tab{5}OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7)\br
++\tab{4}&+(-1.0D0*X(2)*X(6))\br
++\tab{5}OBJGRD(1)=X(7)\br
++\tab{5}OBJGRD(2)=-1.0D0*X(6)\br
++\tab{5}OBJGRD(3)=X(8)+(-1.0D0*X(7))\br
++\tab{5}OBJGRD(4)=X(9)\br
++\tab{5}OBJGRD(5)=-1.0D0*X(8)\br
++\tab{5}OBJGRD(6)=-1.0D0*X(2)\br
++\tab{5}OBJGRD(7)=(-1.0D0*X(3))+X(1)\br
++\tab{5}OBJGRD(8)=(-1.0D0*X(5))+X(3)\br
++\tab{5}OBJGRD(9)=X(4)\br
++\tab{5}RETURN\br
++\tab{5}END
Asp49(name) : SIG == CODE where
name : Symbol
FST ==> FortranScalarType
UFST ==> Union(fst:FST,void:"void")
FT ==> FortranType
FC ==> FortranCode
SYMTAB ==> SymbolTable
RSFC ==> Record(localSymbols:SymbolTable,code:List(FC))
MFLOAT ==> MachineFloat
FEXPR ==> FortranExpression([],['X],MFLOAT)
FRAC ==> Fraction
POLY ==> Polynomial
EXPR ==> Expression
INT ==> Integer
FLOAT ==> Float
VEC ==> Vector
VF2 ==> VectorFunctions2
S ==> Symbol
SIG ==> FortranFunctionCategory with
coerce : FEXPR -> $
++coerce(f) takes an object from the appropriate instantiation of
++\spadtype{FortranExpression} and turns it into an ASP.
CODE ==> add
real : UFST := ["real"::FST]$UFST
integer : UFST := ["integer"::FST]$UFST
syms : SYMTAB := empty()$SYMTAB
declare!(MODE,fortranInteger(),syms)$SYMTAB
declare!(N,fortranInteger(),syms)$SYMTAB
xType : FT := construct(real,[N::S],false)$FT
declare!(X,xType,syms)$SYMTAB
declare!(OBJF,fortranReal(),syms)$SYMTAB
declare!(OBJGRD,xType,syms)$SYMTAB
declare!(NSTATE,fortranInteger(),syms)$SYMTAB
iuType : FT := construct(integer,["*"::S],false)$FT
declare!(IUSER,iuType,syms)$SYMTAB
uType : FT := construct(real,["*"::S],false)$FT
declare!(USER,uType,syms)$SYMTAB
Rep := FortranProgram(name,["void"]$UFST,
[MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER],syms)
fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
localAssign(s:S,j:VEC FEXPR):FC ==
j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
assign(s,j')$FC
coerce(u:FEXPR):$ ==
vars:List(S) := variables(u)
grd:VEC FEXPR := gradient(u,vars)$MultiVariableCalculusFunctions(_
S,FEXPR,VEC FEXPR,List(S))
code : List(FC) := [assign(OBJF@S,fexpr2expr u)$FC,_
localAssign(OBJGRD@S,grd),_
returns()$FC]
code::$
coerce(u:$):OutputForm == coerce(u)$Rep
coerce(c:List FC):$ == coerce(c)$Rep
coerce(r:RSFC):$ == coerce(r)$Rep
coerce(c:FC):$ == coerce(c)$Rep
outputAsFortran(u):Void ==
p := checkPrecision()$NAGLinkSupportPackage
outputAsFortran(u)$Rep
p => restorePrecision()$NAGLinkSupportPackage
retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$
retractIfCan(u:FRAC POLY INT):Union($,"failed") ==
foo : Union(FEXPR,"failed")
foo := retractIfCan(u)$FEXPR
foo case "failed" => "failed"
(foo::FEXPR)::$
retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$
retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") ==
foo : Union(FEXPR,"failed")
foo := retractIfCan(u)$FEXPR
foo case "failed" => "failed"
(foo::FEXPR)::$
retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$
retractIfCan(u:EXPR FLOAT):Union($,"failed") ==
foo : Union(FEXPR,"failed")
foo := retractIfCan(u)$FEXPR
foo case "failed" => "failed"
(foo::FEXPR)::$
retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$
retractIfCan(u:EXPR INT):Union($,"failed") ==
foo : Union(FEXPR,"failed")
foo := retractIfCan(u)$FEXPR
foo case "failed" => "failed"
(foo::FEXPR)::$
retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$
retractIfCan(u:POLY FLOAT):Union($,"failed") ==
foo : Union(FEXPR,"failed")
foo := retractIfCan(u)$FEXPR
foo case "failed" => "failed"
(foo::FEXPR)::$
retract(u:POLY INT):$ == (retract(u)@FEXPR)::$
retractIfCan(u:POLY INT):Union($,"failed") ==
foo : Union(FEXPR,"failed")
foo := retractIfCan(u)$FEXPR
foo case "failed" => "failed"
(foo::FEXPR)::$
|