This file is indexed.

/usr/share/axiom-20170501/src/algebra/ASP55.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
)abbrev domain ASP55 Asp55
++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
++ Date Created: June 1993
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++\spadtype{Asp55} produces Fortran for Type 55 ASPs, needed for NAG routines 
++e04dgf and e04ucf, for example:
++
++\tab{5}SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER\br
++\tab{4}&,USER)\br
++\tab{5}DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*)\br
++\tab{5}INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE\br
++\tab{5}IF(NEEDC(1).GT.0)THEN\br
++\tab{7}C(1)=X(6)**2+X(1)**2\br
++\tab{7}CJAC(1,1)=2.0D0*X(1)\br
++\tab{7}CJAC(1,2)=0.0D0\br
++\tab{7}CJAC(1,3)=0.0D0\br
++\tab{7}CJAC(1,4)=0.0D0\br
++\tab{7}CJAC(1,5)=0.0D0\br
++\tab{7}CJAC(1,6)=2.0D0*X(6)\br
++\tab{5}ENDIF\br
++\tab{5}IF(NEEDC(2).GT.0)THEN\br
++\tab{7}C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2\br
++\tab{7}CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1)\br
++\tab{7}CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1))\br
++\tab{7}CJAC(2,3)=0.0D0\br
++\tab{7}CJAC(2,4)=0.0D0\br
++\tab{7}CJAC(2,5)=0.0D0\br
++\tab{7}CJAC(2,6)=0.0D0\br
++\tab{5}ENDIF\br
++\tab{5}IF(NEEDC(3).GT.0)THEN\br
++\tab{7}C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2\br
++\tab{7}CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1)\br
++\tab{7}CJAC(3,2)=2.0D0*X(2)\br
++\tab{7}CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1))\br
++\tab{7}CJAC(3,4)=0.0D0\br
++\tab{7}CJAC(3,5)=0.0D0\br
++\tab{7}CJAC(3,6)=0.0D0\br
++\tab{5}ENDIF\br
++\tab{5}RETURN\br
++\tab{5}END

Asp55(name) : SIG == CODE where
  name : Symbol

  FST    ==> FortranScalarType
  FT     ==> FortranType
  FSTU   ==> Union(fst:FST,void:"void")
  SYMTAB ==> SymbolTable
  FC     ==> FortranCode
  RSFC   ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
  FRAC   ==> Fraction
  POLY   ==> Polynomial
  EXPR   ==> Expression
  INT    ==> Integer
  S      ==> Symbol
  FLOAT  ==> Float
  VEC    ==> Vector
  VF2    ==> VectorFunctions2
  MAT    ==> Matrix
  MFLOAT ==> MachineFloat
  FEXPR  ==> FortranExpression([],['X],MFLOAT)
  MF2    ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR,
                   EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT)
  SWU    ==> Union(I:Expression Integer,F:Expression Float,
                   CF:Expression Complex Float,switch:Switch)

  SIG ==> FortranVectorFunctionCategory with

    coerce : VEC FEXPR -> $
      ++coerce(f) takes objects from the appropriate instantiation of
      ++\spadtype{FortranExpression} and turns them into an ASP.

  CODE ==> add

    real : FSTU := ["real"::FST]$FSTU

    integer : FSTU := ["integer"::FST]$FSTU

    syms : SYMTAB := empty()$SYMTAB

    declare!(MODE,fortranInteger(),syms)$SYMTAB

    declare!(NCNLN,fortranInteger(),syms)$SYMTAB

    declare!(N,fortranInteger(),syms)$SYMTAB

    declare!(NROWJ,fortranInteger(),syms)$SYMTAB

    needcType : FT := construct(integer,[NCNLN::Symbol],false)$FT

    declare!(NEEDC,needcType,syms)$SYMTAB

    xType : FT := construct(real,[N::Symbol],false)$FT

    declare!(X,xType,syms)$SYMTAB

    cType : FT := construct(real,[NCNLN::Symbol],false)$FT

    declare!(C,cType,syms)$SYMTAB

    cjacType : FT := construct(real,[NROWJ::Symbol,N::Symbol],false)$FT

    declare!(CJAC,cjacType,syms)$SYMTAB

    declare!(NSTATE,fortranInteger(),syms)$SYMTAB

    iuType : FT := construct(integer,["*"::Symbol],false)$FT

    declare!(IUSER,iuType,syms)$SYMTAB

    uType : FT := construct(real,["*"::Symbol],false)$FT

    declare!(USER,uType,syms)$SYMTAB

    Rep := FortranProgram(name,["void"]$FSTU,
                    [MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER,USER],syms)

    -- Take a symbol, pull of the script and turn it into an integer!!
    o2int(u:S):Integer ==
      o : OutputForm := first elt(scripts(u)$S,sub)
      o pretend Integer

    localAssign(s:Symbol,dim:List POLY INT,u:FEXPR):FC ==
      assign(s,dim,(u::EXPR MFLOAT)$FEXPR)$FC

    makeCond(index:INT,fun:FEXPR,jac:VEC FEXPR):FC ==
      needc : EXPR INT := (subscript(NEEDC,[index::OutputForm])$S)::EXPR(INT)
      sw : Switch := GT([needc]$SWU,[0::EXPR(INT)]$SWU)$Switch
      ass : List FC := [localAssign(CJAC,[index::POLY INT,i::POLY INT],jac.i)_
                                                    for i in 1..maxIndex(jac)]
      cond(sw,block([localAssign(C,[index::POLY INT],fun),:ass])$FC)$FC
      
    coerce(u:VEC FEXPR):$ ==
      ncnln:Integer := maxIndex(u)
      x:S := X::S
      pu:List(S) := []
      -- Work out which variables appear in the expressions
      for e in entries(u) repeat
        pu := setUnion(pu,variables(e)$FEXPR)
      scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer)
      -- This should be the maximum X_n which occurs (there may be others
      -- which don't):
      n:Integer := reduce(max,scriptList)$List(Integer)
      p:List(S) := []
      for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p)
      p:= reverse(p)
      jac:MAT FEXPR := _
        jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
      code : List FC := [makeCond(j,u.j,row(jac,j)) for j in 1..ncnln]
      [:code,returns()$FC]::$

    coerce(c:List FC):$ == coerce(c)$Rep

    coerce(r:RSFC):$ == coerce(r)$Rep

    coerce(c:FC):$ == coerce(c)$Rep

    coerce(u:$):OutputForm == coerce(u)$Rep

    outputAsFortran(u):Void ==
      p := checkPrecision()$NAGLinkSupportPackage
      outputAsFortran(u)$Rep
      p => restorePrecision()$NAGLinkSupportPackage

    retract(u:VEC FRAC POLY INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
      v::$

    retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC FRAC POLY FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=_
        map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC EXPR INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
      v::$

    retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC EXPR FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC POLY INT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
      v::$

    retractIfCan(u:VEC POLY INT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$

    retract(u:VEC POLY FLOAT):$ ==
      v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
      v::$

    retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
      v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
      v case "failed" => "failed"
      (v::VEC FEXPR)::$