This file is indexed.

/usr/share/axiom-20170501/src/algebra/ASP74.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
)abbrev domain ASP74 Asp74
++ Author: Mike Dewar and Godfrey Nolan
++ Date Created: Oct 1993
++ Date Last Updated: 6 October 1994
++ References:
++ Hawk95 Two more links to NAG numerics involving CA systems
++ Kead93 Production of Argument SubPrograms in the AXIOM -- NAG link
++ Description:
++ \spadtype{Asp74} produces Fortran for Type 74 ASPs, needed for NAG routine 
++ d03eef, for example:
++
++ \tab{5} SUBROUTINE BNDY(X,Y,A,B,C,IBND)\br
++ \tab{5} DOUBLE PRECISION A,B,C,X,Y\br
++ \tab{5} INTEGER IBND\br
++ \tab{5} IF(IBND.EQ.0)THEN\br
++ \tab{7} A=0.0D0\br
++ \tab{7} B=1.0D0\br
++ \tab{7} C=-1.0D0*DSIN(X)\br
++ \tab{5} ELSEIF(IBND.EQ.1)THEN\br
++ \tab{7} A=1.0D0\br
++ \tab{7} B=0.0D0\br
++ \tab{7} C=DSIN(X)*DSIN(Y)\br
++ \tab{5} ELSEIF(IBND.EQ.2)THEN\br
++ \tab{7} A=1.0D0\br
++ \tab{7} B=0.0D0\br
++ \tab{7} C=DSIN(X)*DSIN(Y)\br
++ \tab{5} ELSEIF(IBND.EQ.3)THEN\br
++ \tab{7} A=0.0D0\br
++ \tab{7} B=1.0D0\br
++ \tab{7} C=-1.0D0*DSIN(Y)\br
++ \tab{5} ENDIF\br
++ \tab{5} END

Asp74(name) : SIG == CODE where
  name : Symbol

  FST    ==> FortranScalarType
  FSTU   ==> Union(fst:FST,void:"void")
  FT     ==> FortranType
  SYMTAB ==> SymbolTable
  FC     ==> FortranCode
  PI     ==> PositiveInteger
  RSFC   ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
  FRAC   ==> Fraction
  POLY   ==> Polynomial
  EXPR   ==> Expression
  INT    ==> Integer
  FLOAT  ==> Float
  MFLOAT ==> MachineFloat
  FEXPR  ==> FortranExpression(['X,'Y],[],MFLOAT)
  U      ==> Union(I: Expression Integer,F: Expression Float,_
                   CF: Expression Complex Float,switch:Switch)
  VEC    ==> Vector
  MAT    ==> Matrix
  M2     ==> MatrixCategoryFunctions2
  MF2a   ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT,
                MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
  MF2b   ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT,
                MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
  MF2c   ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT,
                FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
  MF2d   ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT,
                MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
  MF2e   ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT,
                FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
  MF2f   ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT,
                MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)

  SIG ==> FortranMatrixFunctionCategory with

    coerce : MAT FEXPR -> $
      ++coerce(f) takes objects from the appropriate instantiation of
      ++\spadtype{FortranExpression} and turns them into an ASP.

  CODE ==> add

    syms : SYMTAB := empty()$SYMTAB

    declare!(X,fortranReal(),syms)$SYMTAB

    declare!(Y,fortranReal(),syms)$SYMTAB

    declare!(A,fortranReal(),syms)$SYMTAB

    declare!(B,fortranReal(),syms)$SYMTAB

    declare!(C,fortranReal(),syms)$SYMTAB

    declare!(IBND,fortranInteger(),syms)$SYMTAB

    Rep := FortranProgram(name,["void"]$FSTU,[X,Y,A,B,C,IBND],syms)

    -- To help the poor compiler!
    localAssign(u:Symbol,v:FEXPR):FC == assign(u,(v::EXPR MFLOAT)$FEXPR)$FC

    coerce(u:MAT FEXPR):$ == 
      (nrows(u) ^= 4 or ncols(u) ^= 3) => error "Not a 4X3 matrix"
      flag:U := [IBND@Symbol::EXPR INT]$U
      pt0:U  := [0::EXPR INT]$U
      pt1:U  := [1::EXPR INT]$U
      pt2:U  := [2::EXPR INT]$U
      pt3:U  := [3::EXPR INT]$U
      sw1: Switch := EQ(flag,pt0)$Switch
      sw2: Switch := EQ(flag,pt1)$Switch
      sw3: Switch := EQ(flag,pt2)$Switch
      sw4: Switch := EQ(flag,pt3)$Switch
      a11 : FC := localAssign(A,u(1,1))
      a12 : FC := localAssign(B,u(1,2))
      a13 : FC := localAssign(C,u(1,3))
      a21 : FC := localAssign(A,u(2,1))
      a22 : FC := localAssign(B,u(2,2))
      a23 : FC := localAssign(C,u(2,3))
      a31 : FC := localAssign(A,u(3,1))
      a32 : FC := localAssign(B,u(3,2))
      a33 : FC := localAssign(C,u(3,3))
      a41 : FC := localAssign(A,u(4,1))
      a42 : FC := localAssign(B,u(4,2))
      a43 : FC := localAssign(C,u(4,3))
      c : FC := cond(sw1,block([a11,a12,a13])$FC,
                     cond(sw2,block([a21,a22,a23])$FC,
                          cond(sw3,block([a31,a32,a33])$FC,
                               cond(sw4,block([a41,a42,a43])$FC)$FC)$FC)$FC)$FC
      c::$

    coerce(u:$):OutputForm == coerce(u)$Rep

    coerce(c:FortranCode):$ == coerce(c)$Rep

    coerce(r:RSFC):$ == coerce(r)$Rep

    coerce(c:List FortranCode):$ == coerce(c)$Rep

    outputAsFortran(u):Void ==
      p := checkPrecision()$NAGLinkSupportPackage
      outputAsFortran(u)$Rep
      p => restorePrecision()$NAGLinkSupportPackage

    retract(u:MAT FRAC POLY INT):$ ==
      v : MAT FEXPR := map(retract,u)$MF2a
      v::$

    retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") ==
      v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a
      v case "failed" => "failed"
      (v::MAT FEXPR)::$

    retract(u:MAT FRAC POLY FLOAT):$ ==
      v : MAT FEXPR := map(retract,u)$MF2b
      v::$

    retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") ==
      v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b
      v case "failed" => "failed"
      (v::MAT FEXPR)::$

    retract(u:MAT EXPR INT):$ ==
      v : MAT FEXPR := map(retract,u)$MF2e
      v::$

    retractIfCan(u:MAT EXPR INT):Union($,"failed") ==
      v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e
      v case "failed" => "failed"
      (v::MAT FEXPR)::$

    retract(u:MAT EXPR FLOAT):$ ==
      v : MAT FEXPR := map(retract,u)$MF2f
      v::$

    retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") ==
      v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f
      v case "failed" => "failed"
      (v::MAT FEXPR)::$

    retract(u:MAT POLY INT):$ ==
      v : MAT FEXPR := map(retract,u)$MF2c
      v::$

    retractIfCan(u:MAT POLY INT):Union($,"failed") ==
      v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c
      v case "failed" => "failed"
      (v::MAT FEXPR)::$

    retract(u:MAT POLY FLOAT):$ ==
      v : MAT FEXPR := map(retract,u)$MF2d
      v::$

    retractIfCan(u:MAT POLY FLOAT):Union($,"failed") ==
      v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d
      v case "failed" => "failed"
      (v::MAT FEXPR)::$