This file is indexed.

/usr/share/axiom-20170501/src/algebra/BALFACT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
)abbrev package BALFACT BalancedFactorisation
++ Author: Manuel Bronstein
++ Date Created: 1 March 1991
++ Date Last Updated: 11 October 1991
++ Description: 
++ This package provides balanced factorisations of polynomials.

BalancedFactorisation(R, UP) : SIG == CODE where
  R  : Join(GcdDomain, CharacteristicZero)
  UP : UnivariatePolynomialCategory R

  SIG ==> with

    balancedFactorisation : (UP, UP) -> Factored UP
      ++ balancedFactorisation(a, b) returns
      ++ a factorisation \spad{a = p1^e1 ... pm^em} such that each
      ++ \spad{pi} is balanced with respect to b.

    balancedFactorisation : (UP, List UP) -> Factored UP
      ++ balancedFactorisation(a, [b1,...,bn]) returns
      ++ a factorisation \spad{a = p1^e1 ... pm^em} such that each
      ++ pi is balanced with respect to \spad{[b1,...,bm]}.

  CODE ==> add

    balSqfr : (UP, Integer, List UP) -> Factored UP
    balSqfr1: (UP, Integer,      UP) -> Factored UP

    balancedFactorisation(a:UP, b:UP) == balancedFactorisation(a, [b])

    balSqfr1(a, n, b) ==
      g := gcd(a, b)
      fa := sqfrFactor((a exquo g)::UP, n)
      ground? g => fa
      fa * balSqfr1(g, n, (b exquo (g ** order(b, g)))::UP)

    balSqfr(a, n, l) ==
      b := first l
      empty? rest l => balSqfr1(a, n, b)
      */[balSqfr1(f.factor, n, b) for f in factors balSqfr(a,n,rest l)]

    balancedFactorisation(a:UP, l:List UP) ==
      empty?(ll := select(z1 +-> z1 ^= 0, l)) =>
        error "balancedFactorisation: 2nd argument is empty or all 0"
      sa := squareFree a
      unit(sa) * */[balSqfr(f.factor,f.exponent,ll) for f in factors sa])