This file is indexed.

/usr/share/axiom-20170501/src/algebra/BBTREE.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
)abbrev domain BBTREE BalancedBinaryTree
++ Description:
++ \spadtype{BalancedBinaryTree(S)} is the domain of balanced
++ binary trees (bbtree). A balanced binary tree of \spad{2**k} leaves,
++ for some \spad{k > 0}, is symmetric, that is, the left and right
++ subtree of each interior node have identical shape.
++ In general, the left and right subtree of a given node can differ
++ by at most leaf node.

BalancedBinaryTree(S) : SIG == CODE where
  S : SetCategory

  SIG ==> BinaryTreeCategory(S) with

    finiteAggregate

    shallowlyMutable

--  BUG: applies wrong fnct for balancedBinaryTree(0,[1,2,3,4])
--    balancedBinaryTree: (S, List S) -> %
--      ++ balancedBinaryTree(s, ls) creates a balanced binary tree with
--      ++ s at the interior nodes and elements of ls at the
--      ++ leaves.

    balancedBinaryTree : (NonNegativeInteger, S) -> %
      ++ balancedBinaryTree(n, s) creates a balanced binary tree with
      ++ n nodes each with value s.
      ++
      ++X balancedBinaryTree(4, 0)

    setleaves_! : (%, List S) -> %
      ++ setleaves!(t, ls) sets the leaves of t in left-to-right order
      ++ to the elements of ls.
      ++
      ++X t1:=balancedBinaryTree(4, 0)
      ++X setleaves!(t1,[1,2,3,4])

    mapUp_! : (%, (S,S) -> S) -> S
      ++ mapUp!(t,f) traverses balanced binary tree t in an "endorder"
      ++ (left then right then node) fashion returning t with the value
      ++ at each successive interior node of t replaced by
      ++ f(l,r) where l and r are the values at the immediate
      ++ left and right nodes.
      ++
      ++X T1:=BalancedBinaryTree Integer
      ++X t2:=balancedBinaryTree(4, 0)$T1
      ++X setleaves!(t2,[1,2,3,4]::List(Integer))
      ++X adder(a:Integer,b:Integer):Integer == a+b
      ++X mapUp!(t2,adder)
      ++X t2

    mapUp_! : (%, %, (S,S,S,S) -> S) -> %
      ++ mapUp!(t,t1,f) traverses balanced binary tree t in an "endorder"
      ++ (left then right then node) fashion returning t with the value
      ++ at each successive interior node of t replaced by
      ++ f(l,r,l1,r1) where l and r are the values at the immediate
      ++ left and right nodes. Values l1 and r1 are values at the
      ++ corresponding nodes of a balanced binary tree t1, of identical
      ++ shape at t.
      ++
      ++X T1:=BalancedBinaryTree Integer
      ++X t2:=balancedBinaryTree(4, 0)$T1
      ++X setleaves!(t2,[1,2,3,4]::List(Integer))
      ++X adder4(i:INT,j:INT,k:INT,l:INT):INT == i+j+k+l
      ++X mapUp!(t2,t2,adder4)
      ++X t2

    mapDown_! : (%,S,(S,S) -> S) -> %
      ++ mapDown!(t,p,f) returns t after traversing t in "preorder"
      ++ (node then left then right) fashion replacing the successive
      ++ interior nodes as follows. The root value x is
      ++ replaced by q := f(p,x). The mapDown!(l,q,f) and
      ++ mapDown!(r,q,f) are evaluated for the left and right subtrees
      ++ l and r of t.
      ++
      ++X T1:=BalancedBinaryTree Integer
      ++X t2:=balancedBinaryTree(4, 0)$T1
      ++X setleaves!(t2,[1,2,3,4]::List(Integer))
      ++X adder(i:Integer,j:Integer):Integer == i+j
      ++X mapDown!(t2,4::INT,adder)
      ++X t2

    mapDown_! : (%,S, (S,S,S) -> List S) -> %
      ++ mapDown!(t,p,f) returns t after traversing t in "preorder"
      ++ (node then left then right) fashion replacing the successive
      ++ interior nodes as follows. Let l and r denote the left and
      ++ right subtrees of t. The root value x of t is replaced by p.
      ++ Then f(value l, value r, p), where l and r denote the left
      ++ and right subtrees of t, is evaluated producing two values
      ++ pl and pr. Then \spad{mapDown!(l,pl,f)} and \spad{mapDown!(l,pr,f)}
      ++ are evaluated.
      ++
      ++X T1:=BalancedBinaryTree Integer
      ++X t2:=balancedBinaryTree(4, 0)$T1
      ++X setleaves!(t2,[1,2,3,4]::List(Integer))
      ++X adder3(i:Integer,j:Integer,k:Integer):List Integer == [i+j,j+k]
      ++X mapDown!(t2,4::INT,adder3)
      ++X t2

  CODE ==> BinaryTree(S) add

    Rep := BinaryTree(S)

    leaf? x ==
      empty? x => false
      empty? left x and empty? right x

    setleaves_!(t, u) ==
      n := #u
      n = 0 =>
        empty? t => t
        error "the tree and list must have the same number of elements"
      n = 1 =>
        setvalue_!(t,first u)
        t
      m := n quo 2
      acc := empty()$(List S)
      for i in 1..m repeat
        acc := [first u,:acc]
        u := rest u
      setleaves_!(left t, reverse_! acc)
      setleaves_!(right t, u)
      t

    balancedBinaryTree(n: NonNegativeInteger, val: S) ==
      n = 0 => empty()
      n = 1 => node(empty(),val,empty())
      m := n quo 2
      node(balancedBinaryTree(m, val), val,
           balancedBinaryTree((n - m) pretend NonNegativeInteger, val))

    mapUp_!(x,fn) ==
      empty? x => error "mapUp! called on a null tree"
      leaf? x  => x.value
      x.value := fn(mapUp_!(x.left,fn),mapUp_!(x.right,fn))

    mapUp_!(x,y,fn) ==
      empty? x  => error "mapUp! is called on a null tree"
      leaf? x  =>
        leaf? y => x
        error "balanced binary trees are incompatible"
      leaf? y  =>  error "balanced binary trees are incompatible"
      mapUp_!(x.left,y.left,fn)
      mapUp_!(x.right,y.right,fn)
      x.value := fn(x.left.value,x.right.value,y.left.value,y.right.value)
      x

    mapDown_!(x: %, p: S, fn: (S,S) -> S ) ==
      empty? x => x
      x.value := fn(p, x.value)
      mapDown_!(x.left, x.value, fn)
      mapDown_!(x.right, x.value, fn)
      x

    mapDown_!(x: %, p: S, fn: (S,S,S) -> List S) ==
      empty? x => x
      x.value := p
      leaf? x => x
      u := fn(x.left.value, x.right.value, p)
      mapDown_!(x.left, u.1, fn)
      mapDown_!(x.right, u.2, fn)
      x