This file is indexed.

/usr/share/axiom-20170501/src/algebra/BEZOUT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
)abbrev package BEZOUT BezoutMatrix
++ Author: Clifton J. Williamson
++ Date Created: 2 August 1988
++ Date Last Updated: 3 November 1993
++ Reference: Knuth, The Art of Computer Programming, 2nd edition,
++            Vol. 2, p. 619, problem 12.
++ Description:
++ \spadtype{BezoutMatrix} contains functions for computing resultants and
++ discriminants using Bezout matrices.

BezoutMatrix(R,UP,M,Row,Col) : SIG == CODE where
  R    : Ring
  UP   : UnivariatePolynomialCategory R
  Row  : FiniteLinearAggregate R
  Col  : FiniteLinearAggregate R
  M    : MatrixCategory(R,Row,Col)

  I  ==> Integer
  lc ==> leadingCoefficient

  SIG ==> with

    sylvesterMatrix : (UP,UP) -> M
      ++ sylvesterMatrix(p,q) returns the Sylvester matrix for the two
      ++ polynomials p and q.

    bezoutMatrix : (UP,UP) -> M
      ++ bezoutMatrix(p,q) returns the Bezout matrix for the two
      ++ polynomials p and q.

    if R has commutative("*") then

      bezoutResultant : (UP,UP) -> R
        ++ bezoutResultant(p,q) computes the resultant of the two
        ++ polynomials p and q by computing the determinant of a Bezout matrix.

      bezoutDiscriminant : UP -> R
        ++ bezoutDiscriminant(p) computes the discriminant of a polynomial p
        ++ by computing the determinant of a Bezout matrix.

  CODE ==> add


    sylvesterMatrix(p,q) ==
      n1 := degree p; n2 := degree q; n := n1 + n2
      sylmat : M := new(n,n,0)
      minR := minRowIndex sylmat; minC := minColIndex sylmat
      maxR := maxRowIndex sylmat; maxC := maxColIndex sylmat
      p0 := p
      -- fill in coefficients of 'p'
      while not zero? p0 repeat
        coef := lc p0; deg := degree p0; p0 := reductum p0
        -- put bk = coef(p,k) in sylmat(minR + i,minC + i + (n1 - k))
        for i in 0..n2 - 1 repeat
          qsetelt_!(sylmat,minR + i,minC + n1 - deg + i,coef)
      q0 := q
      -- fill in coefficients of 'q'
      while not zero? q0 repeat
        coef := lc q0; deg := degree q0; q0 := reductum q0
        for i in 0..n1-1 repeat
          qsetelt_!(sylmat,minR + n2 + i,minC + n2 - deg + i,coef)
      sylmat

    bezoutMatrix(p,q) ==
    -- This function computes the Bezout matrix for 'p' and 'q'.
    -- See Knuth, The Art of Computer Programming, Vol. 2, p. 619, # 12.
    -- One must have deg(p) >= deg(q), so the arguments are reversed
    -- if this is not the case.
      n1 := degree p; n2 := degree q; n := n1 + n2
      n1 < n2 => bezoutMatrix(q,p)
      m1 : I := n1 - 1; m2 : I := n2 - 1; m : I := n - 1
      -- 'sylmat' will be a matrix consisting of the first n1 columns
      -- of the standard Sylvester matrix for 'p' and 'q'
      sylmat : M := new(n,n1,0)
      minR := minRowIndex sylmat; minC := minColIndex sylmat
      maxR := maxRowIndex sylmat; maxC := maxColIndex sylmat
      p0 := p
      -- fill in coefficients of 'p'
      while not ground? p0 repeat
        coef := lc p0; deg := degree p0; p0 := reductum p0
        -- put bk = coef(p,k) in sylmat(minR + i,minC + i + (n1 - k))
        -- for i = 0...
        -- quit when i > m2 or when i + (n1 - k) > m1, whichever happens first
        for i in 0..min(m2,deg - 1) repeat
          qsetelt_!(sylmat,minR + i,minC + n1 - deg + i,coef)
      q0 := q
      -- fill in coefficients of 'q'
      while not zero? q0 repeat
        coef := lc q0; deg := degree q0; q0 := reductum q0
        -- put ak = coef(q,k) in sylmat(minR + n1 + i,minC + i + (n2 - k))
        -- for i = 0...
        -- quit when i > m1 or when i + (n2 - k) > m1, whichever happens first
        -- since n2 - k >= 0, we quit when i + (n2 - k) > m1
        for i in 0..(deg + n1 - n2 - 1) repeat
          qsetelt_!(sylmat,minR + n2 + i,minC + n2 - deg + i,coef)
      -- 'bezmat' will be the 'Bezout matrix' as described in Knuth
      bezmat : M := new(n1,n1,0)
      for i in 0..m2 repeat
        -- replace A_i by (b_0 A_i + ... + b_{n_2-1-i} A_{n_2 - 1}) -
        -- (a_0 B_i + ... + a_{n_2-1-i} B_{n_2-1}), as in Knuth
        bound : I := n2 - i; q0 := q
        while not zero? q0 repeat
          deg := degree q0
          if (deg < bound) then
            -- add b_deg A_{n_2 - deg} to the new A_i
            coef := lc q0
            for k in minC..maxC repeat
              c := coef * qelt(sylmat,minR + m2 - i - deg,k) +
                          qelt(bezmat,minR + m2 - i,k)
              qsetelt_!(bezmat,minR + m2 - i,k,c)
          q0 := reductum q0
        p0 := p
        while not zero? p0 repeat
          deg := degree p0
          if deg < bound then
            coef := lc p0
            -- subtract a_deg B_{n_2 - deg} from the new A_i
            for k in minC..maxC repeat
              c := -coef * qelt(sylmat,minR + m - i - deg,k) +
                           qelt(bezmat,minR + m2 - i,k)
              qsetelt_!(bezmat,minR + m2 - i,k,c)
          p0 := reductum p0
      for i in n2..m1 repeat for k in minC..maxC repeat
        qsetelt_!(bezmat,minR + i,k,qelt(sylmat,minR + i,k))
      bezmat

    if R has commutative("*") then

      bezoutResultant(f,g) == determinant bezoutMatrix(f,g)

      if R has IntegralDomain then

        bezoutDiscriminant f ==
          degMod4 := (degree f) rem 4
          (degMod4 = 0) or (degMod4 = 1) =>
            (bezoutResultant(f,differentiate f) exquo (lc f)) :: R
          -((bezoutResultant(f,differentiate f) exquo (lc f)) :: R)

        else

          bezoutDiscriminant f ==
            lc f = 1 =>
              degMod4 := (degree f) rem 4
              (degMod4 = 0) or (degMod4 = 1) =>
                bezoutResultant(f,differentiate f)
              -bezoutResultant(f,differentiate f)
            error "bezoutDiscriminant: leading coefficient must be 1"