/usr/share/axiom-20170501/src/algebra/BLAS1.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | )abbrev package BLAS1 BlasLevelOne
++ Author: Timothy Daly
++ Date Created: 2010
++ Date March 24, 2010
++ Reference: Chellappa, Franchetti and Puschel
++ How to Write Fast Numerical Code: A Small Introduction
++ Description:
++ This package provides an interface to the Blas library (level 1)
BlasLevelOne() : Exports == Implementation where
SI ==> SingleInteger
INT ==> Integer
DF ==> DoubleFloat
SX ==> PrimitiveArray(Float)
DX ==> PrimitiveArray(DoubleFloat)
CDF ==> Complex(DoubleFloat)
LDX ==> List(PrimitiveArray(DoubleFloat))
PCDF ==> PrimitiveArray(Complex(DoubleFloat))
PCF ==> PrimitiveArray(Complex(Float))
Exports == with
dcabs1 : CDF -> DF
++ dcabs1(z) computes (+ (abs (realpart z)) (abs (imagpart z)))
++
++X t1:Complex DoubleFloat := complex(1.0,0)
++X dcabs1(t1)
dasum : (SI, DX, SI) -> DF
++ dasum(n,array,incx) computes the sum of n elements in array
++ using a stride of incx
++
++X dx:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]]
++X dasum(6,dx,1)
++X dasum(3,dx,2)
daxpy : (SI, DF, DX, SI, DX, SI) -> DX
++ daxpy(n,da,x,incx,y,incy) computes a y = a*x + y
++ for each of the chosen elements of the vectors x and y
++ and a constant multiplier a
++ Note that the vector y is modified with the results.
++
++X x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]]
++X y:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]]
++X daxpy(6,2.0,x,1,y,1)
++X y
++X m:PRIMARR(DFLOAT):=[[1.0,2.0,3.0]]
++X n:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]]
++X daxpy(3,-2.0,m,1,n,2)
++X n
dcopy : (SI, DX, SI, DX, SI) -> DX
++ dcopy(n,x,incx,y,incy) copies y from x
++ for each of the chosen elements of the vectors x and y
++ Note that the vector y is modified with the results.
++
++X x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0,6.0]]
++X y:PRIMARR(DFLOAT):=[[0.0,0.0,0.0,0.0,0.0,0.0]]
++X dcopy(6,x,1,y,1)
++X y
++X m:PRIMARR(DFLOAT):=[[1.0,2.0,3.0]]
++X n:PRIMARR(DFLOAT):=[[0.0,0.0,0.0,0.0,0.0,0.0]]
++X dcopy(3,m,1,n,2)
++X n
ddot : (SI, DX, SI, DX, SI) -> DF
++ ddot(n,x,incx,y,incy) computes the vector dot product
++ of elements from the vector x and the vector y
++ If the indicies are negative the elements are taken
++ relative to the far end of the vector.
++
++X x:PRIMARR(DFLOAT):=[[1.0,2.0,3.0,4.0,5.0]]
++X y:PRIMARR(DFLOAT):=[[5.0,6.0,7.0,8.0,9.0]]
++X ddot(0,a,1,b,1) -- handle 0 elements ==> 0
++X ddot(3,a,1,b,1) -- (1,2,3) * (5,6,7) ==> 38.0
++X ddot(3,a,1,b,2) -- increment = 2 in b (1,2,3) * (5,7,9) ==> 46.0
++X ddot(3,a,2,b,1) -- increment = 2 in a (1,3,5) * (5,6,7) ==> 58.0
++X ddot(3,a,1,b,-2) -- increment = -2 in b (1,2,3) * (9,7,5) ==> 38.0
++X ddot(2,a,-2,b,1) -- increment = -2 in a (5,3,1) * (5,6,7) ==> 50.0
++X ddot(3,a,-2,b,-2) -- (5,3,1) * (9,7,5) ==> 71.0
dnrm2 : (SI, DX, SI) -> DF
++ dnrm2 takes the norm of the vector, ||x||
++
++X a:PRIMARR(DFLOAT):=[[3.0, -4.0, 5.0, -7.0, 9.0]]
++X dnrm2(3,a,1) -- 7.0710678118654755 = sqrt(3.0^2 + -4.0^2 + 5.0^2)
++X dnrm2(5,a,1) -- 13.416407864998739 = sqrt(180.0)
++X dnrm2(3,a,2) -- 10.72380529476361 = sqrt(115.0)
drotg : (DF, DF, DF, DF) -> DX
++ drotg computes a 2D plane Givens rotation spanned by two
++ coordinate axes.
++
++X a:MATRIX(DFLOAT):=[[6,5,0],[5,1,4],[0,4,3]]
++X drotg(elt(a,1,1),elt(a,1,2),0.0D0,0.0D0)
drot : (SI, DX, SI, DX, SI, DF, DF) -> LDX
++ drot computes a 2D plane Givens rotation spanned by two
++ coordinate axes. It modifies the arrays in place.
++ The call drot(n,dx,incx,dy,incy,c,s) has the dx array which
++ contains the y axis locations and dy which contains the
++ y axis locations. They are rotated in parallel where
++ c is the cosine of the angle and s is the sine of the angle and
++ \spad{c^2+s^2 = 1}
++
++X dx:PRIMARR(DFLOAT):=[[6,0, 1.0, 4.0, -1.0, -1.0]]
++X dy:PRIMARR(DFLOAT):=[[5.0, 1.0, -4.0, 4.0, -4.0]]
++X drot(5,dx,1,dy,1,0.707106781,0.707106781) -- rotate by 45 degrees
++X dx -- dx has been modified
++X dy -- dy has been modified
++X drot(5,dx,1,dy,1,0.707106781,-0.707106781) -- rotate by -45 degrees
++X dx -- dx has been modified
++X dy -- dy has been modified
dscal : (SI, DF, DX, SI) -> DX
++ dscal scales each element of the vector by the scalar so
++ dscal(n,da,dx,incx) = da*dx for n elements, incremented by incx
++ Note that the dx array is modified in place.
++
++X dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]
++X dscal(6,2.0,dx,1)
++X dx
++X dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]
++X dscal(3,0.5,dx,1)
++X dx
dswap : (SI, DX, SI, DX, SI) -> LDX
++ dswap swaps elements from the first vector with the second
++ Note that the arrays are modified in place.
++
++X dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]
++X dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]
++X dswap(5,dx,1,dy,1)
++X dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]
++X dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]
++X dswap(3,dx,2,dy,2)
++X dx:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]
++X dy:PRIMARR(DFLOAT):=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]
++X dswap(5,dx,1,dy,-1)
dzasum : (SI, PCDF, SI) -> DF
++ dzasum takes the sum over all of the array where each
++ element of the array sum is the sum of the absolute
++ value of the real part and the absolute value of the
++ imaginary part of each array element:
++ for i in array do sum = sum + (real(a(i)) + imag(a(i)))
++
++X d:PRIMARR(COMPLEX(DFLOAT)):=[[1.0+2.0*%i,-3.0+4.0*%i,5.0-6.0*%i]]
++X dzasum(3,d,1) -- 21.0
++X dzasum(3,d,2) -- 14.0
++X dzasum(-3,d,1) -- 0.0
dznrm2 : (SI, PCDF, SI) -> DF
++ dznrm2 returns the norm of a complex vector. It computes
++ sqrt(sum(v*conjugate(v)))
++
++X a:PRIMARR(COMPLEX(DFLOAT))
++X a:=[[3.+4.*%i,-4.+5.*%i,5.+6.*%i,7.-8.*%i,-9.-2.*%i]]
++X dznrm2(5,a,1) -- should be 18.028
++X dznrm2(3,a,2) -- should be 13.077
++X dznrm2(3,a,1) -- should be 11.269
++X dznrm2(3,a,-1) -- should be 0.0
++X dznrm2(-3,a,-1) -- should be 0.0
++X dznrm2(1,a,1) -- should be 5.0
++X dznrm2(1,a,2) -- should be 5.0
icamax : (INT, PCF, INT) -> INT
++ icamax computes the largest absolute value of the elements
++ of the array and returns the index of the first instance
++ of the maximum
++
++X a:PRIMARR(COMPLEX(FLOAT))
++X a:=[[3.+4.*%i,-4.+5.*%i,5.+6.*%i,7.-8.*%i,-9.-2.*%i]]
++X icamax(5,a,1) -- should be 3
++X icamax(0,a,1) -- should be -1
++X icamax(5,a,-1) -- should be -1
++X icamax(3,a,1) -- should be 2
++X icamax(3,a,2) -- should be 1
idamax : (INT, DX, INT) -> INT
++ idamax computes the largest absolute value of the elements
++ of the array and returns the index of the first instance
++ of the maximum.
++
++X a:PRIMARR(DFLOAT):=[[3.0, 4.0, -3.0, 5.0, -1.0]]
++X idamax(5,a,1) -- should be 3
++X idamax(3,a,1) -- should be 1
++X idamax(0,a,1) -- should be -1
++X idamax(-5,a,1) -- should be -1
++X idamax(5,a,-1) -- should be -1
++X idamax(5,a,2) -- should be 0
++X idamax(1,a,0) -- should be -1
++X idamax(1,a,-1) -- should be -1
++X a:PRIMARR(DFLOAT):=[[3.0, 4.0, -3.0, -5.0, -1.0]]
++X idamax(5,a,1) -- should be 3
isamax : (INT, SX, INT) -> INT
++ isamax computes the largest absolute value of the elements
++ of the array and returns the index of the first instance
++ of the maximum.
++
++X a:PRIMARR(FLOAT):=[[3.0, 4.0, -3.0, 5.0, -1.0]]
++X isamax(5,a,1) -- should be 3
++X isamax(3,a,1) -- should be 1
++X isamax(0,a,1) -- should be -1
++X isamax(-5,a,1) -- should be -1
++X isamax(5,a,-1) -- should be -1
++X isamax(5,a,2) -- should be 0
++X isamax(1,a,0) -- should be -1
++X isamax(1,a,-1) -- should be -1
++X a:PRIMARR(FLOAT):=[[3.0, 4.0, -3.0, -5.0, -1.0]]
++X isamax(5,a,1) -- should be 3
izamax : (SI, PCDF, SI) -> INT
++ izamax computes the largest absolute value of the elements
++ of the array and returns the index of the first instance
++ of the maximum.
++
++X a:PRIMARR(COMPLEX(DFLOAT))
++X a:=[[3.+4.*%i,-4.+5.*%i,5.+6.*%i,7.-8.*%i,-9.-2.*%i]]
++X izamax(5,a,1) -- should be 3
++X izamax(0,a,1) -- should be -1
++X izamax(5,a,-1) -- should be -1
++X izamax(3,a,1) -- should be 2
++X izamax(3,a,2) -- should be 1
zaxpy : (SI, CDF, PCDF, SI, PCDF, SI) -> PCDF
++ zaxpy(n,da,x,incx,y,incy) computes a y = a*x + y
++ for each of the chosen elements of the vectors x and y
++ and a constant multiplier a
++ Note that the vector y is modified with the results.
++
++X a:PRIMARR(COMPLEX(DFLOAT))
++X a:=[[3.+4.*%i, -4.+5.*%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*%i]]
++X b:PRIMARR(COMPLEX(DFLOAT))
++X b:=[[3.+4.*%i, -4.+5.*%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*%i]]
++X zaxpy(3,2.0,a,1,b,1)
++X b:=[[3.+4.*%i, -4.+5.*%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*%i]]
++X zaxpy(5,2.0,a,1,b,1)
++X b:=[[3.+4.*%i, -4.+5.*%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*%i]]
++X zaxpy(3,2.0,a,3,b,3)
++X b:=[[3.+4.*%i, -4.+5.*%i, 5.+6.*%i, 7.-8.*%i, -9.-2.*%i]]
++X zaxpy(4,2.0,a,2,b,2)
Implementation == add
dcabs1(z:CDF):DF ==
DCABS1(COMPLEX(real(z),imag(z))$Lisp)$Lisp
dasum(n:SI,dx:DX,incx:SI):DF ==
DASUM(n,dx,incx)$Lisp
daxpy(n:SI,da:DF,dx:DX,incx:SI,dy:DX,incy:SI):DX ==
DAXPY(n,da,dx,incx,dy,incy)$Lisp
dcopy(n:SI,dx:DX,incx:SI,dy:DX,incy:SI):DX ==
DCOPY(n,dx,incx,dy,incy)$Lisp
ddot(n:SI,dx:DX,incx:SI,dy:DX,incy:SI):DF ==
DDOT(n,dx,incx,dy,incy)$Lisp
dnrm2(n:SI,dx:DX,incx:SI):DF ==
DNRM2(n,dx,incx)$Lisp
drotg(a:DF,b:DF,c:DF,s:DF):DX ==
DROTG(a,b,c,s)$Lisp
drot(n:SI,dx:DX,incx:SI,dy:DX,incy:SI,c:DF,s:DF):LDX ==
DROT(n,dx,incx,dy,incy,c,s)$Lisp
dscal(n:SI,da:DF,dx:DX,incx:SI):DX ==
DSCAL(n,da,dx,incx)$Lisp
dswap(n:SI,dx:DX,incx:SI,dy:DX,incy:SI):LDX ==
DSWAP(n,dx,incx,dy,incx)$Lisp
dzasum(n:SI,dz:PCDF,incx:SI):DF ==
DZASUMSPAD(n,dz,incx)$Lisp
dznrm2(n:SI,dz:PCDF,incx:SI):DF ==
DZNRM2SPAD(n,dz,incx)$Lisp
icamax(n:INT,dz:PCF,incx:INT):INT ==
ICAMAXSPAD(n,dz,incx)$Lisp
idamax(n:INT,dz:DX,incx:INT):INT ==
IDAMAX(n,dz,incx)$Lisp
isamax(n:INT,dz:SX,incx:INT):INT ==
ISAMAXSPAD(n,dz,incx)$Lisp
izamax(n:SI,dz:PCDF,incx:SI):INT ==
IZAMAXSPAD(n,dz,incx)$Lisp
zaxpy(n:SI,da:CDF,dx:PCDF,incx:SI,dy:PCDF,incy:SI):PCDF ==
ZAXPYSPAD(n,da,dx,incx,dy,incy)$Lisp
|