/usr/share/axiom-20170501/src/algebra/CLIP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | )abbrev package CLIP TwoDimensionalPlotClipping
++ Author: Clifton J. Williamson
++ Date Created: 22 December 1989
++ Date Last Updated: 10 July 1990
++ Description:
++ Automatic clipping for 2-dimensional plots
++ The purpose of this package is to provide reasonable plots of
++ functions with singularities.
TwoDimensionalPlotClipping() : SIG == CODE where
B ==> Boolean
L ==> List
SEG ==> Segment
RN ==> Fraction Integer
SF ==> DoubleFloat
Pt ==> Point DoubleFloat
PLOT ==> Plot
CLIPPED ==> Record(brans: L L Pt,xValues: SEG SF,yValues: SEG SF)
SIG ==> with
clip : PLOT -> CLIPPED
++ clip(p) performs two-dimensional clipping on a plot, p, from
++ the domain \spadtype{Plot} for the graph of one variable,
++ \spad{y = f(x)}; the default parameters \spad{1/4} for the fraction
++ and \spad{5/1} for the scale are used in the \spadfun{clip} function.
clip : (PLOT,RN,RN) -> CLIPPED
++ clip(p,frac,sc) performs two-dimensional clipping on a plot, p,
++ from the domain \spadtype{Plot} for the graph of one variable
++ \spad{y = f(x)}; the fraction parameter is specified by \spad{frac}
++ and the scale parameter is specified by \spad{sc} for use in the
++ \spadfun{clip} function.
clipParametric : PLOT -> CLIPPED
++ clipParametric(p) performs two-dimensional clipping on a plot,
++ p, from the domain \spadtype{Plot} for the parametric curve
++ \spad{x = f(t)}, \spad{y = g(t)}; the default parameters \spad{1/2}
++ for the fraction and \spad{5/1} for the scale are used in the
++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this
++ function.
clipParametric : (PLOT,RN,RN) -> CLIPPED
++ clipParametric(p,frac,sc) performs two-dimensional clipping on a
++ plot, p, from the domain \spadtype{Plot} for the parametric curve
++ \spad{x = f(t)}, \spad{y = g(t)}; the fraction parameter is
++ specified by \spad{frac} and the scale parameter is specified
++ by \spad{sc} for use in the \fakeAxiomFun{iClipParametric} subroutine,
++ which is called by this function.
clipWithRanges : (L L Pt,SF,SF,SF,SF) -> CLIPPED
++ clipWithRanges(pointLists,xMin,xMax,yMin,yMax) performs clipping
++ on a list of lists of points, \spad{pointLists}. Clipping is
++ done within the specified ranges of \spad{xMin}, \spad{xMax} and
++ \spad{yMin}, \spad{yMax}. This function is used internally by
++ the \fakeAxiomFun{iClipParametric} subroutine in this package.
clip : L Pt -> CLIPPED
++ clip(l) performs two-dimensional clipping on a curve l, which is
++ a list of points; the default parameters \spad{1/2} for the
++ fraction and \spad{5/1} for the scale are used in the
++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this
++ function.
clip : L L Pt -> CLIPPED
++ clip(ll) performs two-dimensional clipping on a list of lists
++ of points, \spad{ll}; the default parameters \spad{1/2} for
++ the fraction and \spad{5/1} for the scale are used in the
++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this
++ function.
CODE ==> add
import PointPackage(DoubleFloat)
import ListFunctions2(Point DoubleFloat,DoubleFloat)
point:(SF,SF) -> Pt
intersectWithHorizLine:(SF,SF,SF,SF,SF) -> Pt
intersectWithVertLine:(SF,SF,SF,SF,SF) -> Pt
intersectWithBdry:(SF,SF,SF,SF,Pt,Pt) -> Pt
discardAndSplit: (L Pt,Pt -> B,SF,SF,SF,SF) -> L L Pt
norm: Pt -> SF
iClipParametric: (L L Pt,RN,RN) -> CLIPPED
findPt: L L Pt -> Union(Pt,"failed")
Fnan?: SF ->Boolean
Pnan?:Pt ->Boolean
Fnan? x == x~=x
Pnan? p == any?(Fnan?,p)
iClipParametric(pointLists,fraction,scale) ==
-- error checks and special cases
(fraction < 0) or (fraction > 1) =>
error "clipDraw: fraction should be between 0 and 1"
empty? pointLists => [nil(),segment(0,0),segment(0,0)]
-- put all points together , sort them according to norm
sortedList := sort((x:Pt,y:Pt):Boolean +-> norm(x) < norm(y),
select((z:Pt):Boolean +-> not Pnan? z,concat pointLists))
empty? sortedList => [nil(),segment(0,0),segment(0,0)]
n := # sortedList
num := numer fraction
den := denom fraction
clipNum := (n * num) quo den
lastN := n - 1 - clipNum
firstPt := first sortedList
xMin : SF := xCoord firstPt
xMax : SF := xCoord firstPt
yMin : SF := yCoord firstPt
yMax : SF := yCoord firstPt
-- calculate min/max for the first (1-fraction)*N points
-- this contracts the range
-- this unnecessarily clips monotonic functions
-- (step-function, x^(high power),etc.)
for k in 0..lastN for pt in rest sortedList repeat
xMin := min(xMin,xCoord pt)
xMax := max(xMax,xCoord pt)
yMin := min(yMin,yCoord pt)
yMax := max(yMax,yCoord pt)
xDiff := xMax - xMin; yDiff := yMax - yMin
xDiff = 0 =>
yDiff = 0 =>
[pointLists,segment(xMin-1,xMax+1),segment(yMin-1,yMax+1)]
[pointLists,segment(xMin-1,xMax+1),segment(yMin,yMax)]
yDiff = 0 =>
[pointLists,segment(xMin,xMax),segment(yMin-1,yMax+1)]
numm := numer scale; denn := denom scale
-- now expand the range by scale
xMin := xMin - (numm :: SF) * xDiff / (denn :: SF)
xMax := xMax + (numm :: SF) * xDiff / (denn :: SF)
yMin := yMin - (numm :: SF) * yDiff / (denn :: SF)
yMax := yMax + (numm :: SF) * yDiff / (denn :: SF)
-- clip with the calculated range
newclip:=clipWithRanges(pointLists,xMin,xMax,yMin,yMax)
-- if we split the lists use the new clip
# (newclip.brans) > # pointLists => newclip
-- calculate extents
xs :L SF:= map (xCoord,sortedList)
ys :L SF:= map (yCoord,sortedList)
xMin :SF :=reduce (min,xs)
yMin :SF :=reduce (min,ys)
xMax :SF :=reduce (max,xs)
yMax :SF :=reduce (max,ys)
xseg:SEG SF :=xMin..xMax
yseg:SEG SF :=yMin..yMax
-- return original
[pointLists,xseg,yseg]@CLIPPED
point(xx,yy) == point(l : L SF := [xx,yy])
intersectWithHorizLine(x1,y1,x2,y2,yy) ==
x1 = x2 => point(x1,yy)
point(x1 + (x2 - x1)*(yy - y1)/(y2 - y1),yy)
intersectWithVertLine(x1,y1,x2,y2,xx) ==
y1 = y2 => point(xx,y1)
point(xx,y1 + (y2 - y1)*(xx - x1)/(x2 - x1))
intersectWithBdry(xMin,xMax,yMin,yMax,pt1,pt2) ==
-- pt1 is in rectangle, pt2 is not
x1 := xCoord pt1; y1 := yCoord pt1
x2 := xCoord pt2; y2 := yCoord pt2
if y2 > yMax then
pt2 := intersectWithHorizLine(x1,y1,x2,y2,yMax)
x2 := xCoord pt2; y2 := yCoord pt2
if y2 < yMin then
pt2 := intersectWithHorizLine(x1,y1,x2,y2,yMin)
x2 := xCoord pt2; y2 := yCoord pt2
if x2 > xMax then
pt2 := intersectWithVertLine(x1,y1,x2,y2,xMax)
x2 := xCoord pt2; y2 := yCoord pt2
if x2 < xMin then
pt2 := intersectWithVertLine(x1,y1,x2,y2,xMin)
pt2
discardAndSplit(pointList,pred,xMin,xMax,yMin,yMax) ==
ans : L L Pt := nil()
list : L Pt := nil()
lastPt? : B := false
lastPt : Pt := point(0,0)
while not empty? pointList repeat
pt := first pointList
pointList := rest pointList
pred(pt) =>
if (empty? list) and lastPt? then
bdryPt := intersectWithBdry(xMin,xMax,yMin,yMax,pt,lastPt)
-- print bracket [ coerce bdryPt ,coerce pt ]
--list := cons(bdryPt,list)
list := cons(pt,list)
if not empty? list then
bdryPt := intersectWithBdry(xMin,xMax,yMin,yMax,first list,pt)
-- print bracket [ coerce bdryPt,coerce first list]
--list := cons(bdryPt,list)
ans := cons( list,ans)
lastPt := pt
lastPt? := true
list := nil()
empty? list => ans
reverse_! cons(reverse_! list,ans)
clip(plot,fraction,scale) ==
(fraction < 0) or (fraction > 1/2) =>
error "clipDraw: fraction should be between 0 and 1/2"
xVals := xRange plot
empty?(pointLists := listBranches plot) =>
[nil(),xVals,segment(0,0)]
more?(pointLists := listBranches plot,1) =>
error "clipDraw: plot has more than one branch"
empty?(pointList := first pointLists) =>
[nil(),xVals,segment(0,0)]
sortedList := sort((x,y)+->yCoord(x) < yCoord(y),pointList)
n := # sortedList; num := numer fraction; den := denom fraction
clipNum := (n * num) quo den
-- throw out points with large and small y-coordinates
yMin := yCoord(sortedList.clipNum)
yMax := yCoord(sortedList.(n - 1 - clipNum))
if Fnan? yMin then yMin : SF := 0
if Fnan? yMax then yMax : SF := 0
(yDiff := yMax - yMin) = 0 =>
[pointLists,xRange plot,segment(yMin - 1,yMax + 1)]
numm := numer scale; denn := denom scale
xMin := lo xVals; xMax := hi xVals
yMin := yMin - (numm :: SF) * yDiff / (denn :: SF)
yMax := yMax + (numm :: SF) * yDiff / (denn :: SF)
lists := discardAndSplit(pointList,_
x +-> (yCoord(x) < yMax) and (yCoord(x) > yMin),
xMin,xMax,yMin,yMax)
yMin := yCoord(sortedList.clipNum)
yMax := yCoord(sortedList.(n - 1 - clipNum))
if Fnan? yMin then yMin : SF := 0
if Fnan? yMax then yMax : SF := 0
for list in lists repeat
for pt in list repeat
if not Fnan?(yCoord pt) then
yMin := min(yMin,yCoord pt)
yMax := max(yMax,yCoord pt)
[lists,xVals,segment(yMin,yMax)]
clip(plot:PLOT) == clip(plot,1/4,5/1)
norm(pt) ==
x := xCoord(pt); y := yCoord(pt)
if Fnan? x then
if Fnan? y then
r:SF := 0
else
r:SF := y**2
else
if Fnan? y then
r:SF := x**2
else
r:SF := x**2 + y**2
r
findPt lists ==
for list in lists repeat
not empty? list =>
for p in list repeat
not Pnan? p => return p
"failed"
clipWithRanges(pointLists,xMin,xMax,yMin,yMax) ==
lists : L L Pt := nil()
for pointList in pointLists repeat
lists := concat(lists,discardAndSplit(pointList,
(x:Pt):Boolean +-> (xCoord(x) <= xMax) and (xCoord(x) >= xMin) and
(yCoord(x) <= yMax) and (yCoord(x) >= yMin),
xMin,xMax,yMin,yMax))
(pt := findPt lists) case "failed" =>
[nil(),segment(0,0),segment(0,0)]
firstPt := pt :: Pt
xMin : SF := xCoord firstPt; xMax : SF := xCoord firstPt
yMin : SF := yCoord firstPt; yMax : SF := yCoord firstPt
for list in lists repeat
for pt in list repeat
if not Pnan? pt then
xMin := min(xMin,xCoord pt)
xMax := max(xMax,xCoord pt)
yMin := min(yMin,yCoord pt)
yMax := max(yMax,yCoord pt)
[lists,segment(xMin,xMax),segment(yMin,yMax)]
clipParametric(plot,fraction,scale) ==
iClipParametric(listBranches plot,fraction,scale)
clipParametric plot == clipParametric(plot,1/2,5/1)
clip(l: L Pt) == iClipParametric(list l,1/2,5/1)
clip(l: L L Pt) == iClipParametric(l,1/2,5/1)
|