This file is indexed.

/usr/share/axiom-20170501/src/algebra/COMBF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
)abbrev package COMBF CombinatorialFunction
++ Author: Manuel Bronstein, Martin Rubey
++ Date Created: 2 Aug 1988
++ Date Last Updated: 30 October 2005
++ Description:
++ Provides combinatorial functions over an integral domain.

CombinatorialFunction(R, F) : SIG == CODE where
  R : Join(OrderedSet, IntegralDomain)
  F : FunctionSpace R

  OP  ==> BasicOperator
  K   ==> Kernel F
  SE  ==> Symbol
  O   ==> OutputForm
  SMP ==> SparseMultivariatePolynomial(R, K)
  Z   ==> Integer

  POWER        ==> "%power"::Symbol
  OPEXP        ==> "exp"::Symbol
  SPECIALDIFF  ==> "%specialDiff"
  SPECIALDISP  ==> "%specialDisp"
  SPECIALEQUAL ==> "%specialEqual"

  SIG ==> with

    belong? : OP -> Boolean
      ++ belong?(op) is true if op is a combinatorial operator;

    operator : OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for F;
      ++ error if op is not a combinatorial operator;

    "**" : (F, F) -> F
      ++ a ** b is the formal exponential a**b;

    binomial : (F, F) -> F
      ++ binomial(n, r) returns the number of subsets of r objects
      ++ taken among n objects, n!/(r! * (n-r)!);
      ++
      ++X [binomial(5,i) for i in 0..5]

    permutation : (F, F) -> F
      ++ permutation(n, r) returns the number of permutations of
      ++ n objects taken r at a time, n!/(n-r)!;

    factorial : F -> F
      ++ factorial(n) returns the factorial of n, n!;

    factorials : F -> F
      ++ factorials(f) rewrites the permutations and binomials in f
      ++ in terms of factorials;

    factorials : (F, SE) -> F
      ++ factorials(f, x) rewrites the permutations and binomials in f
      ++ involving x in terms of factorials;

    summation : (F, SE) -> F
      ++ summation(f(n), n) returns the formal sum S(n) which verifies
      ++ S(n+1) - S(n) = f(n);

    summation : (F, SegmentBinding F) -> F
      ++ summation(f(n), n = a..b) returns f(a) + ... + f(b) as a
      ++ formal sum;

    product : (F, SE) -> F
      ++ product(f(n), n) returns the formal product P(n) which verifies
      ++ P(n+1)/P(n) = f(n);

    product : (F, SegmentBinding  F) -> F
      ++ product(f(n), n = a..b) returns f(a) * ... * f(b) as a
      ++ formal product;

    iifact : F -> F
      ++ iifact(x) should be local but conditional;

    iibinom : List F -> F
      ++ iibinom(l) should be local but conditional;

    iiperm : List F -> F
      ++ iiperm(l) should be local but conditional;

    iipow : List F -> F
      ++ iipow(l) should be local but conditional;

    iidsum : List F -> F
      ++ iidsum(l) should be local but conditional;

    iidprod : List F -> F
      ++ iidprod(l) should be local but conditional;

    ipow : List F -> F
      ++ ipow(l) should be local but conditional;

  CODE ==> add

    ifact     : F -> F
    iiipow    : List F -> F
    iperm     : List F -> F
    ibinom    : List F -> F
    isum      : List F -> F
    idsum     : List F -> F
    iprod     : List F -> F
    idprod    : List F -> F
    dsum      : List F -> O
    ddsum     : List F -> O
    dprod     : List F -> O
    ddprod    : List F -> O
    equalsumprod  : (K, K) -> Boolean 
    equaldsumprod : (K, K) -> Boolean 
    fourth    : List F -> F
    dvpow1    : List F -> F
    dvpow2    : List F -> F
    summand   : List F -> F
    dvsum     : (List F, SE) -> F
    dvdsum    : (List F, SE) -> F
    dvprod    : (List F, SE) -> F
    dvdprod   : (List F, SE) -> F
    facts     : (F, List SE) -> F
    K2fact    : (K, List SE) -> F
    smpfact   : (SMP, List SE) -> F

-- This macro will be used in product and summation, both the 5 and 3
-- argument forms. It is used to introduce a dummy variable in place of the
-- summation index within the summands. This in turn is necessary to keep the
-- indexing variable local, circumventing problems, for example, with
-- differentiation.

    dummy == new()$SE :: F

    opfact  := operator("factorial"::Symbol)$CommonOperators

    opperm  := operator("permutation"::Symbol)$CommonOperators

    opbinom := operator("binomial"::Symbol)$CommonOperators

    opsum   := operator("summation"::Symbol)$CommonOperators

    opdsum  := operator("%defsum"::Symbol)$CommonOperators

    opprod  := operator("product"::Symbol)$CommonOperators

    opdprod := operator("%defprod"::Symbol)$CommonOperators

    oppow   := operator(POWER::Symbol)$CommonOperators

    factorial x          == opfact x

    binomial(x, y)       == opbinom [x, y]

    permutation(x, y)    == opperm [x, y]

    import F
    import Kernel F

    number?(x:F):Boolean ==
      if R has RetractableTo(Z) then
        ground?(x) or
         ((retractIfCan(x)@Union(Fraction(Z),"failed")) case Fraction(Z))
      else
        ground?(x)

    x ** y               == 
      -- Do some basic simplifications
      is?(x,POWER) =>
        args : List F := argument first kernels x
        not(#args = 2) => error "Too many arguments to **"
        number?(first args) and number?(y) =>
          oppow [first(args)**y, second args]
        oppow [first args, (second args)* y]
      -- Generic case
      exp : Union(Record(val:F,exponent:Z),"failed") := isPower x
      exp case Record(val:F,exponent:Z) =>
        expr := exp::Record(val:F,exponent:Z)
        oppow [expr.val, (expr.exponent)*y]
      oppow [x, y]

    belong? op           == has?(op, "comb")

    fourth l             == third rest l

    dvpow1 l             == second(l) * first(l) ** (second l - 1)

    factorials x         == facts(x, variables x)

    factorials(x, v)     == facts(x, [v])

    facts(x, l)          == smpfact(numer x, l) / smpfact(denom x, l)

    summand l            == eval(first l, retract(second l)@K, third l)

    product(x:F, i:SE) ==
      dm := dummy
      opprod [eval(x, k := kernel(i)$K, dm), dm, k::F]

    summation(x:F, i:SE) ==
      dm := dummy
      opsum [eval(x, k := kernel(i)$K, dm), dm, k::F]

-- These two operations return the product or the sum as unevaluated operators
-- A dummy variable is introduced to make the indexing variable local.

    dvsum(l, x) ==
      opsum [differentiate(first l, x), second l, third l]

    dvdsum(l, x) ==
      x = retract(y := third l)@SE => 0
      if member?(x, variables(h := third rest rest l)) or 
         member?(x, variables(g := third rest l)) then
        error "a sum cannot be differentiated with respect to a bound"
      else
        opdsum [differentiate(first l, x), second l, y, g, h]

    dvprod(l, x) ==
      dm := retract(dummy)@SE
      f := eval(first l, retract(second l)@K, dm::F)
      p := product(f, dm)

      opsum [differentiate(first l, x)/first l * p, second l, third l]


    dvdprod(l, x) ==
      x = retract(y := third l)@SE => 0
      if member?(x, variables(h := third rest rest l)) or 
         member?(x, variables(g := third rest l)) then
        error "a product cannot be differentiated with respect to a bound"
      else
        opdsum cons(differentiate(first l, x)/first l, rest l) * opdprod l 

-- These four operations handle the conversion of sums and products to
-- OutputForm

    dprod l ==
      prod(summand(l)::O, third(l)::O)

    ddprod l ==
      prod(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)

    dsum l ==
      sum(summand(l)::O, third(l)::O)

    ddsum l ==
      sum(summand(l)::O, third(l)::O = fourth(l)::O, fourth(rest l)::O)

-- The two operations handle the testing for equality of sums and products.
-- The corresponding property \verb|%specialEqual| set below is checked in
-- Kernel. Note that we can assume that the operators are equal, since this is
-- checked in Kernel itself.

    equalsumprod(s1, s2) ==
      l1 := argument s1
      l2 := argument s2
      (eval(first l1, retract(second l1)@K, second l2) = first l2)

    equaldsumprod(s1, s2) ==
      l1 := argument s1
      l2 := argument s2
      ((third rest l1 = third rest l2) and
       (third rest rest l1 = third rest rest l2) and
       (eval(first l1, retract(second l1)@K, second l2) = first l2))

-- These two operations return the product or the sum as unevaluated operators
-- A dummy variable is introduced to make the indexing variable local.

    product(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)$K
      dm := dummy
      opdprod [eval(x,k,dm), dm, k::F, lo segment s, hi segment s]

    summation(x:F, s:SegmentBinding F) ==
      k := kernel(variable s)$K
      dm := dummy
      opdsum [eval(x,k,dm), dm, k::F, lo segment s, hi segment s]

    smpfact(p, l) ==
      map(x +-> K2fact(x, l), y+->y::F, p)_
        $PolynomialCategoryLifting(IndexedExponents K, K, R, SMP, F)

    K2fact(k, l) ==
      empty? [v for v in variables(kf := k::F) | member?(v, l)] => kf
      empty?(args:List F := [facts(a, l) for a in argument k]) => kf
      is?(k, opperm) =>
        factorial(n := first args) / factorial(n - second args)
      is?(k, opbinom) =>
        n := first args
        p := second args
        factorial(n) / (factorial(p) * factorial(n-p))
      (operator k) args

    operator op ==
      is?(op, "factorial"::Symbol)   => opfact
      is?(op, "permutation"::Symbol) => opperm
      is?(op, "binomial"::Symbol)    => opbinom
      is?(op, "summation"::Symbol)   => opsum
      is?(op, "%defsum"::Symbol)     => opdsum
      is?(op, "product"::Symbol)     => opprod
      is?(op, "%defprod"::Symbol)    => opdprod
      is?(op, POWER)                 => oppow
      error "Not a combinatorial operator"

    iprod l ==
      zero? first l => 0
      (first l = 1) => 1
      kernel(opprod, l)

    isum l ==
      zero? first l => 0
      kernel(opsum, l)

    idprod l ==
      member?(retract(second l)@SE, variables first l) =>
        kernel(opdprod, l)
      first(l) ** (fourth rest l - fourth l + 1)

    idsum l ==
      member?(retract(second l)@SE, variables first l) =>
        kernel(opdsum, l)
      first(l) * (fourth rest l - fourth l + 1)

    ifact x ==
      zero? x or (x = 1) => 1
      kernel(opfact, x)

    ibinom l ==
      n := first l
      ((p := second l) = 0) or (p = n) => 1
      (p = 1) or (p = n - 1) => n
      kernel(opbinom, l)

    iperm l ==
      zero? second l => 1
      kernel(opperm, l)

    if R has RetractableTo Z then

      iidsum l ==
        (r1:=retractIfCan(fourth l)@Union(Z,"failed"))
         case "failed" or
          (r2:=retractIfCan(fourth rest l)@Union(Z,"failed"))
            case "failed" or
             (k:=retractIfCan(second l)@Union(K,"failed")) case "failed"
               => idsum l
        +/[eval(first l,k::K,i::F) for i in r1::Z .. r2::Z]

      iidprod l ==
        (r1:=retractIfCan(fourth l)@Union(Z,"failed"))
         case "failed" or
          (r2:=retractIfCan(fourth rest l)@Union(Z,"failed"))
            case "failed" or
             (k:=retractIfCan(second l)@Union(K,"failed")) case "failed"
               => idprod l
        */[eval(first l,k::K,i::F) for i in r1::Z .. r2::Z]

      iiipow l ==
          (u := isExpt(x := first l, OPEXP)) case "failed" => kernel(oppow, l)
          rec := u::Record(var: K, exponent: Z)
          y := first argument(rec.var)
          (r := retractIfCan(y)@Union(Fraction Z, "failed")) case
              "failed" => kernel(oppow, l)
          (operator(rec.var)) (rec.exponent * y * second l)

      if F has RadicalCategory then

        ipow l ==
          (r := retractIfCan(second l)@Union(Fraction Z,"failed"))
            case "failed" => iiipow l
          first(l) ** (r::Fraction(Z))

      else

        ipow l ==
          (r := retractIfCan(second l)@Union(Z, "failed"))
            case "failed" => iiipow l
          first(l) ** (r::Z)

    else

      ipow l ==
        zero?(x := first l) =>
          zero? second l => error "0 ** 0"
          0
        (x = 1) or zero?(n: F := second l) => 1
        (n = 1) => x
        (u := isExpt(x, OPEXP)) case "failed" => kernel(oppow, l)
        rec := u::Record(var: K, exponent: Z)
        ((y := first argument(rec.var))=1) or y = -1 =>
            (operator(rec.var)) (rec.exponent * y * n)
        kernel(oppow, l)

    if R has CombinatorialFunctionCategory then

      iifact x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => ifact x
        factorial(r::R)::F

      iiperm l ==
        (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
          (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
            => iperm l
        permutation(r1::R, r2::R)::F

      if R has RetractableTo(Z) and F has Algebra(Fraction(Z)) then

         iibinom l ==
           (s:=retractIfCan(second l)@Union(R,"failed")) case R and
              (t:=retractIfCan(s)@Union(Z,"failed")) case Z and t>0 =>
                ans:=1::F
                for i in 0..t-1 repeat
                    ans:=ans*(first l - i::R::F)
                (1/factorial t) * ans
           (s:=retractIfCan(first l-second l)@Union(R,"failed")) case R and
             (t:=retractIfCan(s)@Union(Z,"failed")) case Z and t>0 =>
                ans:=1::F
                for i in 1..t repeat
                    ans:=ans*(second l+i::R::F)
                (1/factorial t) * ans
           (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
             (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
               => ibinom l
           binomial(r1::R, r2::R)::F

-- iibinom checks those cases in which the binomial coefficient may
-- be evaluated explicitly. Currently, the naive iterative algorithm is
-- used to calculate the coefficient, there is room for improvement here.

      else

         iibinom l ==
           (r1 := retractIfCan(first l)@Union(R,"failed")) case "failed" or
             (r2 := retractIfCan(second l)@Union(R,"failed")) case "failed"
               => ibinom l
           binomial(r1::R, r2::R)::F

    else

      iifact x  == ifact x

      iibinom l == ibinom l

      iiperm l  == iperm l

    if R has ElementaryFunctionCategory then

      iipow l ==
        (r1:=retractIfCan(first l)@Union(R,"failed")) case "failed" or
          (r2:=retractIfCan(second l)@Union(R,"failed")) case "failed"
            => ipow l
        (r1::R ** r2::R)::F

    else

      iipow l == ipow l

    if F has ElementaryFunctionCategory then

      dvpow2 l == if zero?(first l) then
                    0
                  else
                    log(first l) * first(l) ** second(l)

    evaluate(opfact, iifact)$BasicOperatorFunctions1(F)
    evaluate(oppow, iipow)
    evaluate(opperm, iiperm)
    evaluate(opbinom, iibinom)
    evaluate(opsum, isum)
    evaluate(opdsum, iidsum)
    evaluate(opprod, iprod)
    evaluate(opdprod, iidprod)
    derivative(oppow, [dvpow1, dvpow2])

-- These four properties define special differentiation rules for sums and 
-- products. 

    setProperty(opsum,   SPECIALDIFF, dvsum@((List F, SE) -> F) pretend None)
    setProperty(opdsum,  SPECIALDIFF, dvdsum@((List F, SE)->F) pretend None)
    setProperty(opprod,  SPECIALDIFF, dvprod@((List F, SE)->F) pretend None)
    setProperty(opdprod, SPECIALDIFF, dvdprod@((List F, SE)->F) pretend None)

-- Set the properties for displaying sums and products and testing for
-- equality.

    setProperty(opsum,   SPECIALDISP, dsum@(List F -> O) pretend None)
    setProperty(opdsum,  SPECIALDISP, ddsum@(List F -> O) pretend None)
    setProperty(opprod,  SPECIALDISP, dprod@(List F -> O) pretend None)
    setProperty(opdprod, SPECIALDISP, ddprod@(List F -> O) pretend None)
    setProperty(opsum,   SPECIALEQUAL, equalsumprod@((K,K) -> Boolean)_
      pretend None)
    setProperty(opdsum,  SPECIALEQUAL, equaldsumprod@((K,K) -> Boolean)_
      pretend None)
    setProperty(opprod,  SPECIALEQUAL, equalsumprod@((K,K) -> Boolean)_
      pretend None)
    setProperty(opdprod, SPECIALEQUAL, equaldsumprod@((K,K) -> Boolean)_
      pretend None)