This file is indexed.

/usr/share/axiom-20170501/src/algebra/CONTFRAC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
)abbrev domain CONTFRAC ContinuedFraction
++ Author: Stephen M. Watt
++ Date Created: January 1987
++ Change History: 7 October 1991
++ Description: 
++ \spadtype{ContinuedFraction} implements general
++ continued fractions.  This version is not restricted to simple,
++ finite fractions and uses the \spadtype{Stream} as a
++ representation.  The arithmetic functions assume that the
++ approximants alternate below/above the convergence point.
++ This is enforced by ensuring the partial numerators and partial
++ denominators are greater than 0 in the Euclidean domain view of \spad{R}
++ (\spad{sizeLess?(0, x)}). 

ContinuedFraction(R) : SIG == CODE where
  R :     EuclideanDomain

  Q   ==> Fraction R
  MT  ==> MoebiusTransform Q
  OUT ==> OutputForm

  SIG ==> Join(Algebra R,Algebra Q,Field) with

    continuedFraction : Q -> %
      ++ continuedFraction(r) converts the fraction \spadvar{r} with
      ++ components of type \spad{R} to a continued fraction over
      ++ \spad{R}.

    continuedFraction : (R, Stream R, Stream R) -> %
      ++ continuedFraction(b0,a,b) constructs a continued fraction in
      ++ the following way:  if \spad{a = [a1,a2,...]} and \spad{b =
      ++ [b1,b2,...]} then the result is the continued fraction
      ++ \spad{b0 + a1/(b1 + a2/(b2 + ...))}.

    reducedContinuedFraction : (R, Stream R) -> %
      ++ reducedContinuedFraction(b0,b) constructs a continued
      ++ fraction in the following way:  if \spad{b = [b1,b2,...]}
      ++ then the result is the continued fraction \spad{b0 + 1/(b1 +
      ++ 1/(b2 + ...))}.  That is, the result is the same as
      ++ \spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.

    partialNumerators : % -> Stream R
      ++ partialNumerators(x) extracts the numerators in \spadvar{x}.
      ++ That is, if \spad{x = continuedFraction(b0, [a1,a2,a3,...],
      ++ [b1,b2,b3,...])}, then \spad{partialNumerators(x) =
      ++ [a1,a2,a3,...]}.

    partialDenominators : % -> Stream R
      ++ partialDenominators(x) extracts the denominators in
      ++ \spadvar{x}.  That is, if \spad{x = continuedFraction(b0,
      ++ [a1,a2,a3,...], [b1,b2,b3,...])}, then
      ++ \spad{partialDenominators(x) = [b1,b2,b3,...]}.

    partialQuotients : % -> Stream R
      ++ partialQuotients(x) extracts the partial quotients in
      ++ \spadvar{x}.  That is, if \spad{x = continuedFraction(b0,
      ++ [a1,a2,a3,...], [b1,b2,b3,...])}, then
      ++ \spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.

    wholePart : % -> R
      ++ wholePart(x) extracts the whole part of \spadvar{x}.  That
      ++ is, if \spad{x = continuedFraction(b0, [a1,a2,a3,...],
      ++ [b1,b2,b3,...])}, then \spad{wholePart(x) = b0}.

    reducedForm : % -> %
      ++ reducedForm(x) puts the continued fraction \spadvar{x} in
      ++ reduced form, the function returns an equivalent
      ++ continued fraction of the form
      ++ \spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.

    approximants : % -> Stream Q
      ++ approximants(x) returns the stream of approximants of the
      ++ continued fraction \spadvar{x}. If the continued fraction is
      ++ finite, then the stream will be infinite and periodic with
      ++ period 1.

    convergents : % -> Stream Q
      ++ convergents(x) returns the stream of the convergents of the
      ++ continued fraction \spadvar{x}. If the continued fraction is
      ++ finite, then the stream will be finite.

    numerators : % -> Stream R
      ++ numerators(x) returns the stream of numerators of the
      ++ approximants of the continued fraction \spadvar{x}. If the
      ++ continued fraction is finite, then the stream will be finite.

    denominators : % -> Stream R
      ++ denominators(x) returns the stream of denominators of the
      ++ approximants of the continued fraction \spadvar{x}. If the
      ++ continued fraction is finite, then the stream will be finite.

    extend : (%,Integer) -> %
      ++ extend(x,n) causes the first \spadvar{n} entries in the
      ++ continued fraction \spadvar{x} to be computed.  Normally
      ++ entries are only computed as needed.

    complete : % -> %
      ++ complete(x) causes all entries in \spadvar{x} to be computed.
      ++ Normally entries are only computed as needed.  If \spadvar{x}
      ++ is an infinite continued fraction, a user-initiated interrupt is
      ++ necessary to stop the computation.

  CODE ==> add

    isOrdered  ==> R has OrderedRing and R has multiplicativeValuation

    canReduce? ==> isOrdered or R has additiveValuation

    Rec ==> Record(num: R, den: R)

    Str ==> Stream Rec

    Rep :=  Record(value: Record(whole: R, fract: Str), reduced?: Boolean)

    import Str

    genFromSequence:     Stream Q -> %

    genReducedForm:      (Q, Stream Q, MT)    -> Stream Rec

    genFractionA:        (Stream R,Stream R)  -> Stream Rec

    genFractionB:        (Stream R,Stream R)  -> Stream Rec

    genNumDen:           (R,R, Stream Rec)    -> Stream R

    genApproximants:     (R,R,R,R,Stream Rec) -> Stream Q

    genConvergents:      (R,R,R,R,Stream Rec) -> Stream Q

    iGenApproximants:    (R,R,R,R,Stream Rec) -> Stream Q

    iGenConvergents:     (R,R,R,R,Stream Rec) -> Stream Q

    reducedForm c == 
        c.reduced? => c
        explicitlyFinite? c.value.fract =>
                      continuedFraction last complete convergents c
        canReduce? => genFromSequence approximants c
        error "Reduced form not defined for this continued fraction."

    eucWhole(a: Q): R == numer a quo denom a

    eucWhole0(a: Q): R ==
        isOrdered =>
            n := numer a
            d := denom a
            q := n quo d
            r := n - q*d
            if r < 0 then q := q - 1
            q
        eucWhole a

    x = y ==
        x := reducedForm x
        y := reducedForm y

        x.value.whole ^= y.value.whole => false

        xl := x.value.fract; yl := y.value.fract

        while not empty? xl and not empty? yl repeat
            frst.xl.den ^= frst.yl.den => return false
            xl := rst xl; yl := rst yl
        empty? xl and empty? yl

    continuedFraction q == q :: %

    if isOrdered then
        continuedFraction(wh,nums,dens) == [[wh,genFractionA(nums,dens)],false]

        genFractionA(nums,dens) ==
            empty? nums or empty? dens => empty()
            n := frst nums
            d := frst dens
            n < 0 => error "Numerators must be greater than 0."
            d < 0 => error "Denominators must be greater than 0."
            concat([n,d]$Rec, delay genFractionA(rst nums,rst dens))
    else

        continuedFraction(wh,nums,dens) == [[wh,genFractionB(nums,dens)],false]

        genFractionB(nums,dens) ==
            empty? nums or empty? dens => empty()
            n := frst nums
            d := frst dens
            concat([n,d]$Rec, delay genFractionB(rst nums,rst dens))

    reducedContinuedFraction(wh,dens) ==
        continuedFraction(wh, repeating [1], dens)

    coerce(n:Integer):% == [[n::R,empty()], true]

    coerce(r:R):%       == [[r,   empty()], true]

    coerce(a: Q): % ==
      wh := eucWhole0 a
      fr := a - wh::Q
      zero? fr => [[wh, empty()], true]

      l : List Rec := empty()
      n := numer fr
      d := denom fr
      while not zero? d repeat
        qr := divide(n,d)
        l  := concat([1,qr.quotient],l)
        n  := d
        d  := qr.remainder
      [[wh, construct rest reverse_! l], true]

    characteristic() == characteristic()$Q

    genFromSequence apps ==
        lo := first apps; apps := rst apps
        hi := first apps; apps := rst apps
        while eucWhole0 lo ^= eucWhole0 hi repeat
            lo := first apps; apps := rst apps
            hi := first apps; apps := rst apps
        wh := eucWhole0 lo
        [[wh, genReducedForm(wh::Q, apps, moebius(1,0,0,1))], canReduce?]

    genReducedForm(wh0, apps, mt) ==
        lo: Q := first apps - wh0; apps := rst apps
        hi: Q := first apps - wh0; apps := rst apps
        lo = hi and zero? eval(mt, lo) => empty()
        mt  := recip mt
        wlo := eucWhole eval(mt, lo)
        whi := eucWhole eval(mt, hi)
        while wlo ^= whi repeat
            wlo := eucWhole eval(mt, first apps - wh0); apps := rst apps
            whi := eucWhole eval(mt, first apps - wh0); apps := rst apps
        concat([1,wlo], delay genReducedForm(wh0, apps, shift(mt, -wlo::Q)))

    wholePart c == 
      c.value.whole

    partialNumerators c == 
      map(x1+->x1.num, c.value.fract)$StreamFunctions2(Rec,R)

    partialDenominators c == 
      map(x1+->x1.den, c.value.fract)$StreamFunctions2(Rec,R)

    partialQuotients c == 
      concat(c.value.whole, partialDenominators c)

    approximants c ==
      empty? c.value.fract => repeating [c.value.whole::Q]
      genApproximants(1,0,c.value.whole,1,c.value.fract)

    convergents c ==
      empty? c.value.fract => concat(c.value.whole::Q, empty())
      genConvergents (1,0,c.value.whole,1,c.value.fract)

    numerators c ==
      empty? c.value.fract => concat(c.value.whole, empty())
      genNumDen(1,c.value.whole,c.value.fract)

    denominators c ==
      genNumDen(0,1,c.value.fract)

    extend(x,n) == (extend(x.value.fract,n); x)

    complete(x) == (complete(x.value.fract); x)

    iGenApproximants(pm2,qm2,pm1,qm1,fr) == delay
      nd := frst fr
      pm := nd.num*pm2 + nd.den*pm1
      qm := nd.num*qm2 + nd.den*qm1
      genApproximants(pm1,qm1,pm,qm,rst fr)

    genApproximants(pm2,qm2,pm1,qm1,fr) ==
      empty? fr => repeating [pm1/qm1]
      concat(pm1/qm1,iGenApproximants(pm2,qm2,pm1,qm1,fr))

    iGenConvergents(pm2,qm2,pm1,qm1,fr) == delay
      nd := frst fr
      pm := nd.num*pm2 + nd.den*pm1
      qm := nd.num*qm2 + nd.den*qm1
      genConvergents(pm1,qm1,pm,qm,rst fr)

    genConvergents(pm2,qm2,pm1,qm1,fr) ==
      empty? fr => concat(pm1/qm1, empty())
      concat(pm1/qm1,iGenConvergents(pm2,qm2,pm1,qm1,fr))

    genNumDen(m2,m1,fr) ==
      empty? fr => concat(m1,empty())
      concat(m1,delay genNumDen(m1,m2*frst(fr).num + m1*frst(fr).den,rst fr))

    gen  ==> genFromSequence

    apx  ==> approximants

    c, d: %
    a: R
    q: Q
    n: Integer

    0 == (0$R) :: %

    1 == (1$R) :: %

    c + d   == genFromSequence map((x,y) +-> x + y, apx c, apx d)

    c - d   == genFromSequence map((x,y) +-> x - y, apx c, rest apx d)

    - c     == genFromSequence map(x +-> - x, rest apx c)

    c * d   == genFromSequence map((x,y) +-> x * y, apx c, apx d)

    a * d   == genFromSequence map(x +-> a * x, apx d)

    q * d   == genFromSequence map(x +-> q * x, apx d)

    n * d   == genFromSequence map(x +-> n * x, apx d)

    c / d   == genFromSequence map((x,y) +-> x / y, apx c, rest apx d)

    recip c ==(c = 0 => "failed";
       genFromSequence map(x +-> 1/x, rest apx c))

    showAll?: () -> Boolean
    showAll?() ==
      NULL(_$streamsShowAll$Lisp)$Lisp => false
      true

    zagRec(t:Rec):OUT == zag(t.num :: OUT,t.den :: OUT)

    coerce(c:%): OUT ==
      wh := c.value.whole
      fr := c.value.fract
      empty? fr => wh :: OUT
      count : NonNegativeInteger := _$streamCount$Lisp
      l : List OUT := empty()
      for n in 1..count while not empty? fr repeat
        l  := concat(zagRec frst fr,l)
        fr := rst fr
      if showAll?() then
        for n in (count + 1).. while explicitEntries? fr repeat
          l  := concat(zagRec frst fr,l)
          fr := rst fr
      if not explicitlyEmpty? fr then l := concat("..." :: OUT,l)
      l := reverse_! l
      e := reduce("+",l)
      zero? wh => e
      (wh :: OUT) + e