/usr/share/axiom-20170501/src/algebra/CRFP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 | )abbrev package CRFP ComplexRootFindingPackage
++ Author: J. Grabmeier
++ Date Created: 31 January 1991
++ Date Last Updated: 12 April 1991
++ References: J. Grabmeier: On Plesken's root finding algorithm,
++ in preparation
++ A. Schoenhage: The fundamental theorem of algebra in terms of computational
++ complexity, preliminary report, Univ. Tuebingen, 1982
++ Description:
++ \spadtype{ComplexRootFindingPackage} provides functions to
++ find all roots of a polynomial p over the complex number by
++ using Plesken's idea to calculate in the polynomial ring
++ modulo f and employing the Chinese Remainder Theorem.
++ In this first version, the precision (see digits)
++ is not increased when this is necessary to
++ avoid rounding errors. Hence it is the user's responsibility to
++ increase the precision if necessary.
++ Note also, if this package is called with, for example, Fraction Integer,
++ the precise calculations could require a lot of time.
++ Also note that evaluating the zeros is not necessarily a good check
++ whether the result is correct: already evaluation can cause
++ rounding errors.
ComplexRootFindingPackage(R, UP) : SIG == CODE where
R : Join(Field, OrderedRing)
UP : UnivariatePolynomialCategory Complex R
C ==> Complex R
FR ==> Factored
I ==> Integer
L ==> List
FAE ==> Record(factors : L UP, error : R)
NNI ==> NonNegativeInteger
OF ==> OutputForm
ICF ==> IntegerCombinatoricFunctions(I)
SIG ==> with
complexZeros : UP -> L C
++ complexZeros(p) tries to determine all complex zeros
++ of the polynomial p with accuracy given by the package
++ constant globalEps which you may change by setErrorBound.
complexZeros : (UP, R) -> L C
++ complexZeros(p, eps) tries to determine all complex zeros
++ of the polynomial p with accuracy given by eps.
divisorCascade : (UP,UP, Boolean) -> L FAE
++ divisorCascade(p,tp) assumes that degree of polynomial tp
++ is smaller than degree of polynomial p, both monic.
++ A sequence of divisions are calculated
++ using the remainder, made monic, as divisor
++ for the the next division. The result contains also the error of the
++ factorizations, the norm of the remainder polynomial.
++ If info is true, then information messages are issued.
divisorCascade : (UP,UP) -> L FAE
++ divisorCascade(p,tp) assumes that degree of polynomial tp
++ is smaller than degree of polynomial p, both monic.
++ A sequence of divisions is calculated
++ using the remainder, made monic, as divisor
++ for the the next division. The result contains also the error of the
++ factorizations, the norm of the remainder polynomial.
factor : (UP,R,Boolean) -> FR UP
++ factor(p, eps, info) tries to factor p into linear factors
++ with error atmost eps. An overall error bound
++ eps0 is determined and iterated tree-like calls
++ to pleskenSplit are used to get the factorization.
++ If info is true, then information messages are given.
factor : (UP,R) -> FR UP
++ factor(p, eps) tries to factor p into linear factors
++ with error atmost eps. An overall error bound
++ eps0 is determined and iterated tree-like calls
++ to pleskenSplit are used to get the factorization.
factor : UP -> FR UP
++ factor(p) tries to factor p into linear factors
++ with error atmost globalEps, the internal error bound,
++ which can be set by setErrorBound. An overall error bound
++ eps0 is determined and iterated tree-like calls
++ to pleskenSplit are used to get the factorization.
graeffe : UP -> UP
++ graeffe p determines q such that \spad{q(-z**2) = p(z)*p(-z)}.
++ Note that the roots of q are the squares of the roots of p.
norm : UP -> R
++ norm(p) determines sum of absolute values of coefficients
++ Note that this function depends on abs.
pleskenSplit : (UP, R, Boolean) -> FR UP
++ pleskenSplit(poly,eps,info) determines a start polynomial start
++ by using "startPolynomial then it increases the exponent
++ n of start ** n mod poly to get an approximate factor of
++ poly, in general of degree "degree poly -1". Then a divisor
++ cascade is calculated and the best splitting is chosen, as soon
++ as the error is small enough.
--++ In a later version we plan
--++ to use the whole information to get a split into more than 2
--++ factors.
++ If info is true, then information messages are issued.
pleskenSplit : (UP, R) -> FR UP
++ pleskenSplit(poly, eps) determines a start polynomial start
++ by using "startPolynomial then it increases the exponent
++ n of start ** n mod poly to get an approximate factor of
++ poly, in general of degree "degree poly -1". Then a divisor
++ cascade is calculated and the best splitting is chosen, as soon
++ as the error is small enough.
--++ In a later version we plan
--++ to use the whole information to get a split into more than 2
--++ factors.
reciprocalPolynomial : UP -> UP
++ reciprocalPolynomial(p) calulates a polynomial which has exactly
++ the inverses of the non-zero roots of p as roots, and the same
++ number of 0-roots.
rootRadius : (UP,R) -> R
++ rootRadius(p,errQuot) calculates the root radius of p with a
++ maximal error quotient of errQuot.
rootRadius : UP -> R
++ rootRadius(p) calculates the root radius of p with a
++ maximal error quotient of 1+globalEps, where
++ globalEps is the internal error bound, which can be
++ set by setErrorBound.
schwerpunkt : UP -> C
++ schwerpunkt(p) determines the 'Schwerpunkt' of the roots of the
++ polynomial p of degree n, the center of gravity, which is
++ coeffient of \spad{x**(n-1)} divided by
++ n times coefficient of \spad{x**n}.
setErrorBound : R -> R
++ setErrorBound(eps) changes the internal error bound,
-- by default being 10 ** (-20) to eps, if R is
++ by default being 10 ** (-3) to eps, if R is
++ a member in the category \spadtype{QuotientFieldCategory Integer}.
++ The internal globalDigits is set to
++ \em ceiling(1/r)**2*10 being 10**7 by default.
startPolynomial : UP -> Record(start: UP, factors: FR UP)
++ startPolynomial(p) uses the ideas of Schoenhage's
++ variant of Graeffe's method to construct circles which separate
++ roots to get a good start polynomial, one whose
++ image under the Chinese Remainder Isomorphism has both entries
++ of norm smaller and greater or equal to 1. In case the
++ roots are found during internal calculations.
++ The corresponding factors
++ are in factors which are otherwise 1.
CODE ==> add
Rep := ModMonic(C, UP)
-- constants
c : C
r : R
--globalDigits : I := 10 ** 41
globalDigits : I := 10 ** 7
globalEps : R :=
--a : R := (1000000000000000000000 :: I) :: R
a : R := (1000 :: I) :: R
1/a
emptyLine : OF := " "
dashes: OF := center "---------------------------------------------------"
dots : OF := center "..................................................."
one : R := 1$R
two : R := 2 * one
ten : R := 10 * one
eleven : R := 11 * one
weakEps := eleven/ten
--invLog2 : R := 1/log10 (2*one)
-- signatures of local functions
absC : C -> R
--
absR : R -> R
--
calculateScale : UP -> R
--
makeMonic : UP -> UP
-- 'makeMonic p' divides 'p' by the leading coefficient,
-- to guarantee new leading coefficient to be 1$R we cannot
-- simply divide the leading monomial by the leading coefficient
-- because of possible rounding errors
min: (FAE, FAE) -> FAE
-- takes factorization with smaller error
nthRoot : (R, NNI) -> R
-- nthRoot(r,n) determines an approximation to the n-th
-- root of r, if \spadtype{R} has ?**?: (R,Fraction Integer)->R
-- we use this, otherwise we use approxNthRoot via
-- \spadtype{Integer}
shift: (UP,C) -> UP
-- shift(p,c) changes p(x) into p(x+c), thereby modifying the
-- roots u_j of p to the roots (u_j - c) of shift(p,c)
scale: (UP,C) -> UP
-- scale(p,c) changes p(x) into p(cx), thereby modifying the
-- roots u_j of p to the roots ((1/c) u_j) of scale(p,c)
-- implementation of exported functions
complexZeros(p,eps) ==
--r1 : R := rootRadius(p,weakEps)
--eps0 : R = r1 * nthRoot(eps, degree p)
-- right now we are content with
eps0 : R := eps/(ten ** degree p)
facs : FR UP := factor(p,eps0)
[-coefficient(linfac.factor,0) for linfac in factors facs]
complexZeros p == complexZeros(p,globalEps)
setErrorBound r ==
r <= 0 => error "setErrorBound: need error bound greater 0"
globalEps := r
if R has QuotientFieldCategory Integer then
rd : Integer := ceiling(1/r)
globalDigits := rd * rd * 10
lof : List OF := _
["setErrorBound: internal digits set to",globalDigits::OF]
print hconcat lof
messagePrint "setErrorBound: internal error bound set to"
globalEps
pleskenSplit(poly,eps,info) ==
p := makeMonic poly
fp : FR UP
if not zero? (md := minimumDegree p) then
fp : FR UP := irreducibleFactor(monomial(1,1)$UP,md)$(FR UP)
p := p quo monomial(1,md)$UP
sP : Record(start: UP, factors: FR UP) := startPolynomial p
fp : FR UP := sP.factors
if not (fp = 1) then
qr: Record(quotient: UP, remainder: UP):=divide(p,makeMonic expand fp)
p := qr.quotient
st := sP.start
zero? degree st => fp
-- we calculate in ModMonic(C, UP),
-- next line defines the polynomial, which is used for reducing
setPoly p
nm : R := eps
split : FAE
sR : Rep := st :: Rep
psR : Rep := sR ** (degree poly)
notFoundSplit : Boolean := true
while notFoundSplit repeat
-- if info then
-- lof : L OF := ["not successfull, new exponent:", nn::OF]
-- print hconcat lof
psR := psR * psR * sR -- exponent (2*d +1)
-- be careful, too large exponent results in rounding errors
-- tp is the first approximation of a divisor of poly:
tp : UP := lift psR
zero? degree tp =>
if info then print "we leave as we got constant factor"
nilFactor(poly,1)$(FR UP)
-- this was the case where we don't find a non-trivial factorization
-- we refine tp by repeated polynomial division and hope that
-- the norm of the remainder gets small from time to time
splits : L FAE := divisorCascade(p, makeMonic tp, info)
split := reduce(min,splits)
notFoundSplit := (eps <= split.error)
for fac in split.factors repeat
fp :=
(degree fac = 1) => fp * nilFactor(fac,1)$(FR UP)
fp * irreducibleFactor(fac,1)$(FR UP)
fp
startPolynomial p == -- assume minimumDegree is 0
--print (p :: OF)
fp : FR UP := 1
(degree p = 1) =>
p := makeMonic p
[p,irreducibleFactor(p,1)]
startPoly : UP := monomial(1,1)$UP
eps : R := weakEps -- 10 per cent errors allowed
r1 : R := rootRadius(p, eps)
rd : R := 1/rootRadius(reciprocalPolynomial p, eps)
-- unit circle splitting!
(r1 > (2::R)) and (rd < 1/(2::R)) => [startPoly,fp]
-- otherwise the norms of the roots are too closed so we
-- take the center of gravity as new origin:
u : C := schwerpunkt p
startPoly := startPoly-monomial(u,0)
p := shift(p,-u)
-- determine new rootRadius:
r1 : R := rootRadius(p, eps)
startPoly := startPoly/(r1::C)
-- use one of the 4 points r1*zeta, where zeta is a 4th root of unity
-- as new origin, this could be changed to an arbitrary list
-- of elements of norm 1.
listOfCenters : L C := [complex(r1,0), complex(0,r1), _
complex(-r1,0), complex(0,-r1)]
lp : L UP := [shift(p,v) for v in listOfCenters]
-- next we check if one of these centers is a root
centerIsRoot : Boolean := false
for i in 1..maxIndex lp repeat
if (mD := minimumDegree lp.i) > 0 then
pp : UP := monomial(1,1)-monomial(listOfCenters.i-u,0)
centerIsRoot := true
fp := fp * irreducibleFactor(pp,mD)
centerIsRoot =>
p := shift(p,u) quo expand fp
--print (p::OF)
zero? degree p => [p,fp]
sP:= startPolynomial(p)
[sP.start,fp]
-- choose the best one w.r.t. maximal quotient of norm of largest
-- root and norm of smallest root
lpr1 : L R := [rootRadius(q,eps) for q in lp]
lprd : L R := [1/rootRadius(reciprocalPolynomial q,eps) for q in lp]
-- later we should check here of an rd is smaller than globalEps
lq : L R := []
for i in 1..maxIndex lpr1 repeat
lq := cons(lpr1.i/lprd.i, lq)
--lq : L R := [(l/s)::R for l in lpr1 for s in lprd])
lq := reverse lq
po := position(reduce(max,lq),lq)
--p := lp.po
--lrr : L R := [rootRadius(p,i,1+eps) for i in 2..(degree(p)-1)]
--lrr := concat(concat(lpr1.po,lrr),lprd.po)
--lu : L R := [(lrr.i + lrr.(i+1))/2 for i in 1..(maxIndex(lrr)-1)]
[startPoly - monomial(listOfCenters.po,0),fp]
norm p ==
-- reduce(_+$R,map(absC,coefficients p))
nm : R := 0
for c in coefficients p repeat
nm := nm + absC c
nm
pleskenSplit(poly,eps) == pleskenSplit(poly,eps,false)
graeffe p ==
-- If p = ao x**n + a1 x**(n-1) + ... + a<n-1> x + an
-- and q = bo x**n + b1 x**(n-1) + ... + b<n-1> x + bn
-- are such that q(-x**2) = p(x)p(-x), then
-- bk := ak**2 + 2 * ((-1) * a<k-1>*a<k+1> + ... +
-- (-1)**l * a<l>*a<l>) where l = min(k, n-k).
-- graeffe(p) constructs q using these identities.
n : NNI := degree p
aForth : L C := []
for k in 0..n repeat -- aForth = [a0, a1, ..., a<n-1>, an]
aForth := cons(coefficient(p, k::NNI), aForth)
aBack : L C := [] -- after k steps
-- aBack = [ak, a<k-1>, ..., a1, a0]
gp : UP := 0$UP
for k in 0..n repeat
ak : C := first aForth
aForth := rest aForth
aForthCopy : L C := aForth -- we iterate over aForth and
aBackCopy : L C := aBack -- aBack but do not want to
-- destroy them
sum : C := 0
const : I := -1 -- after i steps const = (-1)**i
for aminus in aBack for aplus in aForth repeat
-- after i steps aminus = a<k-i> and aplus = a<k+i>
sum := sum + const * aminus * aplus
aForthCopy := rest aForthCopy
aBackCopy := rest aBackCopy
const := -const
gp := gp + monomial(ak*ak + 2 * sum, (n-k)::NNI)
aBack := cons(ak, aBack)
gp
rootRadius(p,errorQuotient) ==
errorQuotient <= 1$R =>
error "rootRadius: second Parameter must be greater than 1"
pp : UP := p
rho : R := calculateScale makeMonic pp
rR : R := rho
pp := makeMonic scale(pp,complex(rho,0$R))
expo : NNI := 1
d : NNI := degree p
currentError: R := nthRoot(2::R, 2)
currentError := d*20*currentError
while nthRoot(currentError, expo) >= errorQuotient repeat
-- if info then print (expo :: OF)
pp := graeffe pp
rho := calculateScale pp
expo := 2 * expo
rR := nthRoot(rho, expo) * rR
pp := makeMonic scale(pp,complex(rho,0$R))
rR
rootRadius(p) == rootRadius(p, 1+globalEps)
schwerpunkt p ==
zero? p => 0$C
zero? (d := degree p) => error _
"schwerpunkt: non-zero const. poly has no roots and no schwerpunkt"
-- coeffient of x**d and x**(d-1)
lC : C := coefficient(p,d) -- ^= 0
nC : C := coefficient(p,(d-1) pretend NNI)
(denom := recip ((d::I::C)*lC)) case "failed" => error "schwerpunkt: _
degree * leadingCoefficient not invertible in ring of coefficients"
- (nC*(denom::C))
reciprocalPolynomial p ==
zero? p => 0
d : NNI := degree p
md : NNI := d+minimumDegree p
lm : L UP := [monomial(coefficient(p,i),(md-i) :: NNI) for i in 0..d]
sol := reduce(_+, lm)
divisorCascade(p, tp, info) ==
lfae : L FAE := nil()
for i in 1..degree tp while (degree tp > 0) repeat
-- USE monicDivide !!!
qr : Record(quotient: UP, remainder: UP) := divide(p,tp)
factor1 : UP := tp
factor2 : UP := makeMonic qr.quotient
-- refinement of tp:
tp := qr.remainder
nm : R := norm tp
listOfFactors : L UP := cons(factor2,nil()$(L UP))
listOfFactors := cons(factor1,listOfFactors)
lfae := cons( [listOfFactors,nm], lfae)
if info then
--lof : L OF := [i :: OF,"-th division:"::OF]
--print center box hconcat lof
print emptyLine
lof : L OF := ["error polynomial has degree " ::OF,_
(degree tp)::OF, " and norm " :: OF, nm :: OF]
print center hconcat lof
lof : L OF := ["degrees of factors:" ::OF,_
(degree factor1)::OF," ", (degree factor2)::OF]
print center hconcat lof
if info then print emptyLine
reverse lfae
divisorCascade(p, tp) == divisorCascade(p, tp, false)
factor(poly,eps) == factor(poly,eps,false)
factor(p) == factor(p, globalEps)
factor(poly,eps,info) ==
result : FR UP := coerce monomial(leadingCoefficient poly,0)
d : NNI := degree poly
--should be
--den : R := (d::I)::R * two**(d::Integer) * norm poly
--eps0 : R := eps / den
-- for now only
eps0 : R := eps / (ten*ten)
(d = 1) => irreducibleFactor(poly,1)$(FR UP)
listOfFactors : L Record(factor: UP,exponent: I) :=_
list [makeMonic poly,1]
if info then
lof: L OF := [dashes,dots,"list of Factors:",dots,listOfFactors::OF, _
dashes, "list of Linear Factors:", dots, result::OF, _
dots,dashes]
print vconcat lof
while not null listOfFactors repeat
p : UP := (first listOfFactors).factor
exponentOfp : I := (first listOfFactors).exponent
listOfFactors := rest listOfFactors
if info then
lof : L OF := ["just now we try to split the polynomial:",p::OF]
print vconcat lof
split : FR UP := pleskenSplit(p, eps0, info)
(numberOfFactors split = 1) =>
-- in a later version we will change error bound and
-- accuracy here to deal this case as well
lof : L OF := ["factor: couldn't split factor",_
center(p :: OF), "with required error bound"]
print vconcat lof
result := result * nilFactor(p, exponentOfp)
-- now we got 2 good factors of p, we drop p and continue
-- with the factors, if they are not linear, or put a
-- linear factor to the result
for rec in factors(split)$(FR UP) repeat
newFactor : UP := rec.factor
expOfFactor := exponentOfp * rec.exponent
(degree newFactor = 1) =>
result := result * nilFactor(newFactor,expOfFactor)
listOfFactors:=cons([newFactor,expOfFactor],_
listOfFactors)
result
-- implementation of local functions
absC c == nthRoot(norm(c)$C,2)
absR r ==
r < 0 => -r
r
min(fae1,fae2) ==
fae2.error < fae1.error => fae2
fae1
calculateScale p ==
d := degree p
maxi :R := 0
for j in 1..d for cof in rest coefficients p repeat
-- here we need abs: R -> R
rc : R := absR real cof
ic : R := absR imag cof
locmax: R := max(rc,ic)
maxi := max( nthRoot( locmax/(binomial(d,j)$ICF::R), j), maxi)
-- Maybe I should use some type of logarithm for the following:
maxi = 0$R => error("Internal Error: scale cannot be 0")
rho :R := one
rho < maxi =>
while rho < maxi repeat rho := ten * rho
rho / ten
while maxi < rho repeat rho := rho / ten
rho = 0 => one
rho
makeMonic p ==
p = 0 => p
monomial(1,degree p)$UP + (reductum p)/(leadingCoefficient p)
scale(p, c) ==
-- eval(p,cx) is missing !!
eq : Equation UP := equation(monomial(1,1), monomial(c,1))
eval(p,eq)
-- improvement?: direct calculation of the new coefficients
shift(p,c) ==
rhs : UP := monomial(1,1) + monomial(c,0)
eq : Equation UP := equation(monomial(1,1), rhs)
eval(p,eq)
-- improvement?: direct calculation of the new coefficients
nthRoot(r,n) ==
R has RealNumberSystem => r ** (1/n)
R has QuotientFieldCategory Integer =>
den : I := approxNthRoot(globalDigits * denom r ,n)$IntegerRoots(I)
num : I := approxNthRoot(globalDigits * numer r ,n)$IntegerRoots(I)
num/den
-- the following doesn't compile
--R has coerce: % -> Fraction Integer =>
-- q : Fraction Integer := coerce(r)@Fraction(Integer)
-- den : I := approxNthRoot(globalDigits * denom q ,n)$IntegerRoots(I)
-- num : I := approxNthRoot(globalDigits * numer q ,n)$IntegerRoots(I)
-- num/den
r -- this is nonsense, perhaps a Newton iteration for x**n-r here
)fin
-- for late use:
graeffe2 p ==
-- substitute x by -x :
eq : Equation UP := equation(monomial(1,1), monomial(-1$C,1))
pp : UP := p*eval(p,eq)
gp : UP := 0$UP
while pp ^= 0 repeat
i:NNI := (degree pp) quo (2::NNI)
coef:C:=
even? i => leadingCoefficient pp
- leadingCoefficient pp
gp := gp + monomial(coef,i)
pp := reductum pp
gp
shift2(p,c) ==
d := degree p
cc : C := 1
coef := List C := [cc := c * cc for i in 1..d]
coef := cons(1,coef)
coef := [coefficient(p,i)*coef.(1+i) for i in 0..d]
res : UP := 0
for j in 0..d repeat
cc := 0
for i in j..d repeat
cc := cc + coef.i * (binomial(i,j)$ICF :: R)
res := res + monomial(cc,j)$UP
res
scale2(p,c) ==
d := degree p
cc : C := 1
coef := List C := [cc := c * cc for i in 1..d]
coef := cons(1,coef)
coef := [coefficient(p,i)*coef.(i+1) for i in 0..d]
res : UP := 0
for i in 0..d repeat res := res + monomial(coef.(i+1),i)$UP
res
scale2: (UP,C) -> UP
shift2: (UP,C) -> UP
graeffe2 : UP -> UP
++ graeffe2 p determines q such that \spad{q(-z**2) = p(z)*p(-z)}.
++ Note that the roots of q are the squares of the roots of p.
|