This file is indexed.

/usr/share/axiom-20170501/src/algebra/CSTTOOLS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
)abbrev package CSTTOOLS CyclicStreamTools
++ Author: Clifton J. Williamson
++ Date Created: 5 December 1989
++ Date Last Updated: 5 December 1989
++ Description:
++ This package provides tools for working with cyclic streams.

CyclicStreamTools(S,ST) : SIG == CODE where
  S : Type
  ST : LazyStreamAggregate S

  SIG ==> with

    cycleElt : ST -> Union(ST,"failed")
      ++ cycleElt(s) returns a pointer to a node in the cycle if the stream 
      ++ s is cyclic and returns "failed" if s is not cyclic
      ++
      ++X p:=repeating([1,2,3])
      ++X q:=cons(4,p)
      ++X cycleElt q
      ++X r:=[1,2,3]::Stream(Integer)
      ++X cycleElt r

    computeCycleLength : ST -> NonNegativeInteger
      ++ computeCycleLength(s) returns the length of the cycle of a
      ++ cyclic stream t, where s is a pointer to a node in the
      ++ cyclic part of t.
      ++
      ++X p:=repeating([1,2,3])
      ++X q:=cons(4,p)
      ++X computeCycleLength(cycleElt(q))

    computeCycleEntry : (ST,ST) -> ST
      ++ computeCycleEntry(x,cycElt), where cycElt is a pointer to a
      ++ node in the cyclic part of the cyclic stream x, returns a
      ++ pointer to the first node in the cycle
      ++
      ++X p:=repeating([1,2,3])
      ++X q:=cons(4,p)
      ++X computeCycleEntry(q,cycleElt(q))

  CODE ==> add

    cycleElt x ==
      y := x
      for i in 0.. repeat
        (explicitlyEmpty? y) or (lazy? y) => return "failed"
        y := rst y
        if odd? i then x := rst x
        eq?(x,y) => return y

    computeCycleLength cycElt ==
      i : NonNegativeInteger
      y := cycElt
      for i in 1.. repeat
        y := rst y
        eq?(y,cycElt) => return i

    computeCycleEntry(x,cycElt) ==
      y := rest(x, computeCycleLength cycElt)
      repeat
        eq?(x,y) => return x
        x := rst x ; y := rst y