This file is indexed.

/usr/share/axiom-20170501/src/algebra/CVMP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
)abbrev package CVMP CoerceVectorMatrixPackage
++ Author: J. Grabmeier
++ Date Created: 26 June 1991
++ Date Last Updated: 26 June 1991
++ Description:
++ CoerceVectorMatrixPackage is an unexposed, technical package
++ for data conversions

CoerceVectorMatrixPackage(R) : SIG == CODE where
  R : CommutativeRing

  M2P ==> MatrixCategoryFunctions2(R, Vector R, Vector R, Matrix R, _
    Polynomial R, Vector Polynomial R, Vector Polynomial R, Matrix Polynomial R)
  M2FP ==> MatrixCategoryFunctions2(R, Vector R, Vector R, Matrix R, _
    Fraction Polynomial R, Vector Fraction Polynomial R, _
    Vector Fraction Polynomial R, Matrix Fraction Polynomial R)

  SIG ==> with

    coerceP : Vector Matrix R -> Vector Matrix Polynomial R
      ++ coerceP(v) coerces a vector v with entries in \spadtype{Matrix R}
      ++ as vector over \spadtype{Matrix Polynomial R}

    coerce : Vector Matrix R -> Vector Matrix Fraction Polynomial R
      ++ coerce(v) coerces a vector v with entries in \spadtype{Matrix R}
      ++ as vector over \spadtype{Matrix Fraction Polynomial R}

  CODE ==> add

    imbedFP : R -> Fraction Polynomial R
    imbedFP r == (r:: Polynomial R) :: Fraction Polynomial R

    imbedP : R -> Polynomial R
    imbedP r == (r:: Polynomial R)

    coerceP(g:Vector Matrix R) : Vector Matrix Polynomial R ==
      m2 : Matrix Polynomial R
      lim : List Matrix R := entries g
      l: List Matrix Polynomial R :=  []
      for m in lim repeat
        m2 :=  map(imbedP,m)$M2P
        l := cons(m2,l)
      vector reverse l

    coerce(g:Vector Matrix R) : Vector Matrix Fraction Polynomial R ==
      m3 : Matrix Fraction Polynomial R
      lim : List Matrix R := entries g
      l: List Matrix Fraction Polynomial R :=  []
      for m in lim repeat
        m3 :=  map(imbedFP,m)$M2FP
        l := cons(m3,l)
      vector reverse l