This file is indexed.

/usr/share/axiom-20170501/src/algebra/D01APFA.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
)abbrev domain D01APFA d01apfAnnaType
++ Author: Brian Dupee
++ Date Created: March 1994
++ Date Last Updated: December 1997
++ References:
++ Dupe95 Using Computer Algebra to Choose and Apply Numerical Routines
++ Dewa92 Using Computer Algebra to Select Numerical Algorithms
++ Description:
++ \axiomType{d01apfAnnaType} is a domain of
++ \axiomType{NumericalIntegrationCategory}
++ for the NAG routine D01APF, a general numerical integration routine which
++ can handle end point singularities of the algebraico-logarithmic form
++ w(x) = (x-a)^c * (b-x)^d.  The 
++ function \axiomFun{measure} measures the usefulness of the routine D01APF
++ for the given problem.  The function \axiomFun{numericalIntegration}
++ performs the integration by using \axiomType{NagIntegrationPackage}.

d01apfAnnaType() : SIG == CODE where

  EF2  ==> ExpressionFunctions2
  EDF  ==> Expression DoubleFloat
  LDF  ==> List DoubleFloat
  SDF  ==> Stream DoubleFloat
  DF  ==> DoubleFloat
  FI  ==> Fraction Integer
  EFI  ==> Expression Fraction Integer
  SOCDF  ==> Segment OrderedCompletion DoubleFloat
  NIA  ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF)
  MDNIA  ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF)
  INT  ==> Integer
  BOP  ==> BasicOperator
  S  ==> Symbol
  ST  ==> String
  LST  ==> List String
  RT  ==> RoutinesTable

  SIG ==> NumericalIntegrationCategory

  CODE ==> Result add

    Rep:=Result
    import Rep, NagIntegrationPackage, d01AgentsPackage, d01WeightsPackage

    measure(R:RT,args:NIA) ==
      ext:Result := empty()$Result
      d := (c := 0$DF)
      if ((a := exprHasAlgebraicWeight(args)) case LDF) then
        if  (a.1 > -1) then c := a.1
        if  (a.2 > -1) then d := a.2
      l:INT := exprHasLogarithmicWeights(args)
      (zero? c) and (zero? d) and (l = 1) =>
          [0.0,"d01apf: A suitable singularity has not been found", ext]
      out:LDF := [c,d,l :: DF]
      outany:Any := coerce(out)$AnyFunctions1(LDF)
      ex:Record(key:S,entry:Any) := [d01apfextra@S,outany]
      ext := insert!(ex,ext)$Result
      st:ST :=  "Recommended is d01apf with c = " df2st(c) ", d = " 
                              df2st(d) " and l = " string(l)$ST
      [getMeasure(R,d01apf@S)$RT, st, ext]

    numericalIntegration(args:NIA,hints:Result) ==
      Var:EDF := coerce(args.var)$EDF
      la:Any := coerce(search((d01apfextra@S),hints)$Result)@Any
      list:LDF := retract(la)$AnyFunctions1(LDF)
      Fac1:EDF := (Var - (getlo(args.range) :: EDF))$EDF
      Fac2:EDF := ((gethi(args.range) :: EDF) - Var)$EDF
      c := first(list)$LDF
      d := second(list)$LDF
      l := (retract(third(list)$LDF)@INT)$DF
      thebiz:EDF := (Fac1**(c :: EDF))*(Fac2**(d :: EDF))
      if l > 1 then
        if l = 2 then
          thebiz := thebiz*log(Fac1)
        else if l = 3 then
          thebiz := thebiz*log(Fac2)
        else
          thebiz := thebiz*log(Fac1)*log(Fac2)
      Fn :=  (args.fn/thebiz)$EDF
      ArgsFn := map(x+->convert(x)$DF,Fn)$EF2(DF,Float)
      b:Float :=getButtonValue("d01apf","functionEvaluations")$AttributeButtons
      fEvals:INT := wholePart exp(1.1513*(1.0/(2.0*(1.0-b))))
      iw:INT := 75*fEvals
      f : Union(fn:FileName,fp:Asp1(G)) := [retract(ArgsFn)$Asp1(G)]
      d01apf(getlo(args.range),gethi(args.range),c,d,l,_
             args.abserr,args.relerr,4*iw,iw,-1,f)