This file is indexed.

/usr/share/axiom-20170501/src/algebra/D01WGTS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
)abbrev package D01WGTS d01WeightsPackage
++ Author: Brian Dupee
++ Date Created: July 1994
++ Date Last Updated: January 1998
++ Description:
++ \axiom{d01WeightsPackage} is a package for functions used to investigate
++ whether a function can be divided into a simpler function and a weight
++ function.  The types of weights investigated are those giving rise to
++ end-point singularities of the algebraico-logarithmic type, and 
++ trigonometric weights.

d01WeightsPackage() : SIG == CODE where

  LEDF  ==> List Expression DoubleFloat
  KEDF  ==> Kernel Expression DoubleFloat
  LKEDF  ==> List Kernel Expression DoubleFloat
  EDF  ==> Expression DoubleFloat
  PDF  ==> Polynomial DoubleFloat
  FI  ==> Fraction Integer
  LDF  ==> List DoubleFloat
  DF  ==> DoubleFloat
  SOCDF  ==> Segment OrderedCompletion DoubleFloat
  OCDF  ==> OrderedCompletion DoubleFloat
  NIA  ==> Record(var:Symbol,fn:EDF,range:SOCDF,abserr:DF,relerr:DF)
  INT  ==> Integer
  BOP  ==> BasicOperator
  URBODF  ==> Union(Record(op:BasicOperator,w:DF),"failed")
  LURBODF  ==> List(Union(Record(op:BasicOperator,w:DF), "failed"))
 
  SIG ==> with

    exprHasWeightCosWXorSinWX : NIA -> URBODF 
      ++ \axiom{exprHasWeightCosWXorSinWX} looks for trigonometric
      ++ weights in an expression of the form \axiom{cos \omega x} or
      ++ \axiom{sin \omega x}, returning the value of \omega 
      ++ (\notequal 1) and the operator. 

    exprHasAlgebraicWeight : NIA -> Union(LDF,"failed")
      ++ \axiom{exprHasAlgebraicWeight} looks for algebraic weights
      ++ giving rise to singularities of the function at the end-points.

    exprHasLogarithmicWeights : NIA -> INT
      ++ \axiom{exprHasLogarithmicWeights} looks for logarithmic weights
      ++ giving rise to singularities of the function at the end-points.
    
  CODE ==> add

    score:(EDF,EDF) -> FI
    kernelIsLog:KEDF -> Boolean 
    functionIsPolynomial?:EDF -> Boolean
    functionIsNthRoot?:(EDF,EDF) -> Boolean 
    functionIsQuotient:EDF -> Union(EDF,"failed")
    findCommonFactor:LEDF -> Union(LEDF,"failed")
    findAlgebraicWeight:(NIA,EDF) -> Union(DF,"failed")
    exprHasListOfWeightsCosWXorSinWX:(EDF,Symbol) -> LURBODF
    exprOfFormCosWXorSinWX:(EDF,Symbol) -> URBODF
    bestWeight:LURBODF -> URBODF
    weightIn?:(URBODF,LURBODF) -> Boolean
    inRest?:(EDF,LEDF)->Boolean
    factorIn?:(EDF,LEDF)->Boolean
    voo?:(EDF,EDF)->Boolean
   
    kernelIsLog(k:KEDF):Boolean ==
      (name k = (log :: Symbol))@Boolean
 
    factorIn?(a:EDF,l:LEDF):Boolean ==
      for i in 1..# l repeat
        (a = l.i)@Boolean => return true
      false
 
    voo?(b:EDF,a:EDF):Boolean ==
       (voo:=isTimes(b)) case LEDF and factorIn?(a,voo)
 
    inRest?(a:EDF,l:LEDF):Boolean ==
      every?(x+->voo?(x,a) ,l)
 
    findCommonFactor(l:LEDF):Union(LEDF,"failed") ==
      empty?(l)$LEDF => "failed"
      f := first(l)$LEDF
      r := rest(l)$LEDF
      (t := isTimes(f)$EDF) case LEDF =>
        pos:=select(x+->inRest?(x,r),t)
        empty?(pos) => "failed"
        pos
      "failed"
 
    exprIsLogarithmicWeight(f:EDF,Var:EDF,a:EDF,b:EDF):INT ==
      ans := 0$INT
      k := tower(f)$EDF
      lf := select(kernelIsLog,k)$LKEDF
      empty?(lf)$LKEDF => ans
      for i in 1..# lf repeat
        arg := argument lf.i
        if (arg.1 = (Var - a)) then
          ans := ans + 1
        else if (arg.1 = (b - Var)) then
          ans := ans + 2
      ans      
 
    exprHasLogarithmicWeights(args:NIA):INT ==
      ans := 1$INT
      a := getlo(args.range)$d01AgentsPackage :: EDF
      b := gethi(args.range)$d01AgentsPackage :: EDF
      Var := args.var :: EDF
      (l := isPlus numerator args.fn) case LEDF =>
        (cf := findCommonFactor l) case LEDF =>
          for j in 1..# cf repeat
            ans := ans + exprIsLogarithmicWeight(cf.j,Var,a,b)
          ans
        ans
      ans := ans + exprIsLogarithmicWeight(args.fn,Var,a,b)
 
    functionIsQuotient(expr:EDF):Union(EDF,"failed") ==
      (k := mainKernel expr) case KEDF =>
        expr = inv(f := k :: KEDF :: EDF)$EDF => f
        (numerator expr = 1) => denominator expr
        "failed"
      "failed"
 
    functionIsPolynomial?(f:EDF):Boolean ==
      (retractIfCan(f)@Union(PDF,"failed"))$EDF case PDF
 
    functionIsNthRoot?(f:EDF,e:EDF):Boolean ==
      (m := mainKernel f) case "failed" => false
      ((# (kernels f)) = 1) 
        and (name operator m = (nthRoot :: Symbol))@Boolean
          and (((argument m).1 = e)@Boolean)
 
    score(f:EDF,e:EDF):FI ==
      ans := 0$FI
      (t := isTimes f) case LEDF =>
        for i in 1..# t repeat
          ans := ans + score(t.i,e)
        ans
      (q := functionIsQuotient f) case EDF =>
        ans := ans - score(q,e)
      functionIsPolynomial? f =>
        g:EDF := f/e
        if functionIsPolynomial? g then
          ans := 1+score(g,e)
        else
          ans 
      (l := isPlus f) case LEDF =>
        (cf := findCommonFactor l) case LEDF =>
          factor := 1$EDF
          for i in 1..# cf repeat
            factor := factor*cf.i
          ans := ans + score(f/factor,e) + score(factor,e)
        ans
      functionIsNthRoot?(f,e) =>
        (p := isPower f) case "failed" => ans
        exp := p.exponent
        m := mainKernel f
        m case KEDF => 
          arg := argument m
          a:INT := (retract(arg.2)@INT)$EDF
          exp / a
        ans
      ans
 
    findAlgebraicWeight(args:NIA,e:EDF):Union(DF,"failed") == 
      zero?(s := score(args.fn,e)) => "failed"
      s :: DF
 
    exprHasAlgebraicWeight(args:NIA):Union(LDF,"failed") ==
      (f := functionIsContinuousAtEndPoints(args)$d01AgentsPackage) 
                                          case continuous =>"failed"
      Var := args.var :: EDF
      a := getlo(args.range)$d01AgentsPackage :: EDF
      b := gethi(args.range)$d01AgentsPackage :: EDF
      A := Var - a
      B := b - Var
      f case lowerSingular => 
        (h := findAlgebraicWeight(args,A)) case "failed" => "failed"
        [h,0] 
      f case upperSingular => 
        (g := findAlgebraicWeight(args,B)) case "failed" => "failed"
        [0,g] 
      h := findAlgebraicWeight(args,A) 
      g := findAlgebraicWeight(args,B)
      r := (h case "failed")
      s := (g case "failed")
      (r) and (s) => "failed"
      r => [0,coerce(g)@DF]
      s => [coerce(h)@DF,0]  
      [coerce(h)@DF,coerce(g)@DF]
 
    exprOfFormCosWXorSinWX(f:EDF,var:Symbol): URBODF ==
      l:LKEDF := kernels(f)$EDF
      # l = 1 => 
        a:LEDF := argument(e:KEDF := first(l)$LKEDF)$KEDF
        empty?(a) => "failed"
        m:Union(LEDF,"failed") := isTimes(first(a)$LEDF)$EDF 
        m case LEDF => -- if it is a list, it will have at least two elements
          is?(second(m)$LEDF,var)$EDF =>
            omega:DF := retract(first(m)$LEDF)@DF
            o:BOP := operator(n:Symbol:=name(e)$KEDF)$BOP
            (n = cos@Symbol)@Boolean => [o,omega]
            (n = sin@Symbol)@Boolean => [o,omega]
            "failed"
          "failed"
        "failed"
      "failed"
 
    exprHasListOfWeightsCosWXorSinWX(f:EDF,var:Symbol): LURBODF ==
      (e := isTimes(f)$EDF) case LEDF => 
        [exprOfFormCosWXorSinWX(u,var) for u in e]
      empty?(k := kernels f) => ["failed"]
      ((first(k)::EDF) = f) => 
        [exprOfFormCosWXorSinWX(f,var)]
      ["failed"]
 
    bestWeight(l:LURBODF): URBODF ==
      empty?(l)$LURBODF => "failed"
      best := first(l)$LURBODF        --  best is first in list
      empty?(rest(l)$LURBODF) => best
      for i in 2..# l repeat          --  unless next is better
        r:URBODF := l.i
        if r case "failed" then leave
        else if best case "failed" then
          best := r
        else if r.w > best.w then
          best := r
      best
 
    weightIn?(weight:URBODF,listOfWeights:LURBODF):Boolean ==
      n := # listOfWeights
      for i in 1..n repeat                               -- cycle through list
        (weight = listOfWeights.i)@Boolean => return true -- return when found
      false
 
    exprHasWeightCosWXorSinWX(args:NIA):URBODF ==
      ans := empty()$LURBODF
      f:EDF := numerator(args.fn)$EDF
      (t:Union(LEDF,"failed") := isPlus(f)) case "failed" => 
        bestWeight(exprHasListOfWeightsCosWXorSinWX(f,args.var))
      if t case LEDF then
        e1 := first(t)$LEDF
        le1:LURBODF := exprHasListOfWeightsCosWXorSinWX(e1,args.var)
        le1 := [u for u in le1 | (not (u case "failed"))]
        empty?(le1)$LURBODF => "failed"
        test := true
        for i in 1..# le1 repeat
          le1i:URBODF := le1.i
          for j in 2..# t repeat
            if test then
              tj:LURBODF := exprHasListOfWeightsCosWXorSinWX(t.j,args.var)
              test := weightIn?(le1i,tj)
          if test then
            ans := concat([le1i],ans)
        bestWeight ans
      else "failed"