This file is indexed.

/usr/share/axiom-20170501/src/algebra/D02AGNT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
)abbrev package D02AGNT d02AgentsPackage
++ Author: Brian Dupee
++ Date Created: May 1994
++ Date Last Updated: January 1997
++ Description:

d02AgentsPackage() : SIG == CODE where

  LEDF  ==> List Expression DoubleFloat
  LEEDF  ==> List Equation Expression DoubleFloat
  EEDF  ==> Equation Expression DoubleFloat
  VEDF  ==> Vector Expression DoubleFloat
  MEDF  ==> Matrix Expression DoubleFloat
  MDF  ==> Matrix DoubleFloat
  EDF  ==> Expression DoubleFloat
  DF  ==> DoubleFloat
  F  ==> Float
  INT  ==> Integer
  CDF  ==> Complex DoubleFloat
  LDF  ==> List DoubleFloat
  LF  ==> List Float
  S  ==> Symbol
  LS  ==> List Symbol
  MFI  ==> Matrix Fraction Integer
  LFI  ==> List Fraction Integer
  FI  ==> Fraction Integer
  ODEA  ==> Record(xinit:DF,xend:DF,fn:VEDF,yinit:LDF,intvals:LDF,g:EDF,abserr:DF,relerr:DF)
  ON  ==> Record(additions:INT,multiplications:INT,exponentiations:INT,functionCalls:INT)
  RVE   ==> Record(val:EDF,exponent:INT)
  RSS  ==> Record(stiffnessFactor:F,stabilityFactor:F)
  ATT  ==> Record(stiffness:F,stability:F,expense:F,accuracy:F,intermediateResults:F)
  ROA  ==> Record(key:ODEA,entry:ATT)

  SIG ==>  with

    combineFeatureCompatibility : (F,F) -> F
      ++ combineFeatureCompatibility(C1,C2) is for interacting attributes

    combineFeatureCompatibility : (F,LF) -> F
      ++ combineFeatureCompatibility(C1,L) is for interacting attributes

    sparsityIF : MEDF -> F
      ++ sparsityIF(m) calculates the sparsity of a jacobian matrix

    jacobian : (VEDF,LS) -> MEDF
      ++ jacobian(v,w) is a local function to make a jacobian matrix

    eval: (MEDF,LS,VEDF) -> MEDF
      ++ eval(mat,symbols,values) evaluates a multivariable matrix at given values
      ++ for each of a list of variables

    stiffnessAndStabilityFactor : MEDF -> RSS
      ++ stiffnessAndStabilityFactor(me) calculates the stability and
      ++ stiffness factor of a system of first-order differential equations
      ++ (by evaluating the maximum difference in the real parts of the
      ++ negative eigenvalues of the jacobian of the system for which O(10)
      ++ equates to mildly stiff wheras stiffness ratios of O(10^6) are not
      ++ uncommon) and whether the system is likely to show any oscillations
      ++ (identified by the closeness to the imaginary axis of the complex
      ++ eigenvalues of the jacobian).

    stiffnessAndStabilityOfODEIF : ODEA -> RSS
      ++ stiffnessAndStabilityOfODEIF(ode) calculates the intensity values
      ++ of stiffness of a system of first-order differential equations
      ++ (by evaluating the maximum difference in the real parts of the
      ++ negative eigenvalues of the jacobian of the system for which O(10)
      ++ equates to mildly stiff wheras stiffness ratios of O(10^6) are not
      ++ uncommon) and whether the system is likely to show any oscillations
      ++ (identified by the closeness to the imaginary axis of the complex
      ++ eigenvalues of the jacobian).
      ++
      ++ It returns two values in the range [0,1].

    systemSizeIF : ODEA -> F
      ++ systemSizeIF(ode) returns the intensity value of the size of
      ++ the system of ODEs.  20 equations corresponds to the neutral
      ++ value.  It returns a value in the range [0,1].

    expenseOfEvaluationIF : ODEA -> F
      ++ expenseOfEvaluationIF(o) returns the intensity value of the 
      ++ cost of evaluating the input ODE.  This is in terms of the number
      ++ of ``operational units''.  It returns a value in the range
      ++ [0,1].\indent{20}
      ++ 400 ``operation units'' -> 0.75 
      ++ 200 ``operation units'' -> 0.5 
      ++ 83 ``operation units'' -> 0.25 \indent{15}
      ++ exponentiation = 4 units , function calls = 10 units.

    accuracyIF : ODEA -> F
      ++ accuracyIF(o) returns the intensity value of the accuracy
      ++ requirements of the input ODE.  A request of accuracy of 10^-6 
      ++ corresponds to the neutral intensity.  It returns a value
      ++ in the range [0,1].

    intermediateResultsIF : ODEA -> F
      ++ intermediateResultsIF(o) returns a value corresponding to the 
      ++ required number of intermediate results required and, therefore, 
      ++ an indication of how much this would affect the step-length of the 
      ++ calculation.  It returns a value in the range [0,1].

  CODE ==> add

    import ExpertSystemToolsPackage

    accuracyFactor:ODEA -> F
    expenseOfEvaluation:ODEA -> F
    eval1:(LEDF,LEEDF) -> LEDF
    stiffnessAndStabilityOfODE:ODEA -> RSS
    intermediateResultsFactor:ODEA -> F
    leastStabilityAngle:(LDF,LDF) -> F

    intermediateResultsFactor(ode:ODEA):F ==
      resultsRequirement := #(ode.intvals)
      (1.0-exp(-(resultsRequirement::F)/50.0)$F)

    intermediateResultsIF(o:ODEA):F ==
      ode := copy o
      (t := showIntensityFunctions(ode)$ODEIntensityFunctionsTable) case ATT =>
        s := coerce(t)@ATT
        negative?(s.intermediateResults)$F => 
          s.intermediateResults := intermediateResultsFactor(ode)
          r:ROA := [ode,s]
          insert!(r)$ODEIntensityFunctionsTable
          s.intermediateResults
        s.intermediateResults
      a:ATT := [-1.0,-1.0,-1.0,-1.0,e:=intermediateResultsFactor(ode)]
      r:ROA := [ode,a]
      insert!(r)$ODEIntensityFunctionsTable
      e

    accuracyFactor(ode:ODEA):F ==
      accuracyRequirements := convert(ode.abserr)@F
      if zero?(accuracyRequirements) then
        accuracyRequirements := convert(ode.relerr)@F
      val := inv(accuracyRequirements)$F
      n := log10(val)$F
      (1.0-exp(-(n/(2.0))**2/(15.0))$F)

    accuracyIF(o:ODEA):F ==
      ode := copy o
      (t := showIntensityFunctions(ode)$ODEIntensityFunctionsTable) case ATT =>
        s := coerce(t)@ATT
        negative?(s.accuracy)$F => 
          s.accuracy := accuracyFactor(ode)
          r:ROA := [ode,s]
          insert!(r)$ODEIntensityFunctionsTable
          s.accuracy
        s.accuracy
      a:ATT := [-1.0,-1.0,-1.0,e:=accuracyFactor(ode),-1.0]
      r:ROA := [ode,a]
      insert!(r)$ODEIntensityFunctionsTable
      e

    systemSizeIF(ode:ODEA):F ==
      n := #(ode.fn)
      (1.0-exp((-n::F/75.0))$F)

    expenseOfEvaluation(o:ODEA):F ==
      -- expense of evaluation of an ODE 
      -- <0.3 inexpensive - 0.5 neutral - >0.7 very expensive
      -- 400 `operation units' -> 0.75 
      -- 200 `operation units' -> 0.5 
      -- 83 `operation units' -> 0.25
      -- ** = 4 units , function calls = 10 units.
      ode := copy o.fn
      expenseOfEvaluation(ode)

    expenseOfEvaluationIF(o:ODEA):F ==
      ode := copy o
      (t := showIntensityFunctions(ode)$ODEIntensityFunctionsTable) case ATT =>
        s := coerce(t)@ATT
        negative?(s.expense)$F => 
          s.expense := expenseOfEvaluation(ode)
          r:ROA := [ode,s]
          insert!(r)$ODEIntensityFunctionsTable
          s.expense
        s.expense
      a:ATT := [-1.0,-1.0,e:=expenseOfEvaluation(ode),-1.0,-1.0]
      r:ROA := [ode,a]
      insert!(r)$ODEIntensityFunctionsTable
      e

    leastStabilityAngle(realPartsList:LDF,imagPartsList:LDF):F ==
      complexList := _
        [complex(u,v)$CDF for u in realPartsList for v in imagPartsList]
      argumentList := _
        [abs((abs(argument(u)$CDF)$DF)-(pi()$DF)/2)$DF for u in complexList]
      sortedArgumentList := sort(argumentList)$LDF
      list := [u for u in sortedArgumentList | not zero?(u) ]
      empty?(list)$LDF => 0$F
      convert(first(list)$LDF)@F

    stiffnessAndStabilityFactor(me:MEDF):RSS ==
      -- search first for real eigenvalues of the jacobian (symbolically)
      -- if the system isn't too big
      r:INT := ncols(me)$MEDF  
      b:Boolean := ((# me) < 150)
      if b then
        mc:MFI := map(edf2fi,me)$ExpertSystemToolsPackage2(EDF,FI)
        e:LFI := realEigenvalues(mc,1/100)$NumericRealEigenPackage(FI)
        b := ((# e) >= r-1)@Boolean       
      b =>
        -- if all the eigenvalues are real, find negative ones
        e := sort(neglist(e)$ExpertSystemToolsPackage1(FI))
        -- if there are two or more, calculate stiffness ratio
        ((n:=#e)>1)@Boolean => [coerce(e.1/e.n)@F,0$F] 
        -- otherwise stiffness not present
        [0$F,0$F]
      md:MDF := map(edf2df,me)$ExpertSystemToolsPackage2(EDF,DF)
      -- otherwise calculate numerically the complex eigenvalues
      -- using NAG routine f02aff.
      res:Result := f02aff(r,r,md,-1)$NagEigenPackage
      realParts:Union(Any,"failed") := search(rr::Symbol,res)$Result
      realParts case "failed" => [0$F,0$F]
      -- array === matrix
      realPartsMatrix:MDF := retract(realParts)$AnyFunctions1(MDF) 
      imagParts:Union(Any,"failed") := search(ri::Symbol,res)$Result
      imagParts case "failed" => [0$F,0$F]
      -- array === matrix
      imagPartsMatrix:MDF := retract(imagParts)$AnyFunctions1(MDF) 
      imagPartsList:LDF := members(imagPartsMatrix)$MDF
      realPartsList:LDF := members(realPartsMatrix)$MDF
      stabilityAngle := leastStabilityAngle(realPartsList,imagPartsList)
      negRealPartsList := _
        sort(neglist(realPartsList)$ExpertSystemToolsPackage1(DF))
      empty?(negRealPartsList)$LDF => [0$F,stabilityAngle]
      ((n:=#negRealPartsList)>1)@Boolean => 
        out := convert(negRealPartsList.1/negRealPartsList.n)@F
        [out,stabilityAngle]    -- calculate stiffness ratio
      [-convert(negRealPartsList.1)@F,stabilityAngle]
      
    eval1(l:LEDF,e:LEEDF):LEDF ==
      [eval(u,e)$EDF for u in l]

    eval(mat:MEDF,symbols:LS,values:VEDF):MEDF ==
      l := listOfLists(mat)
      ledf := entries(values)$VEDF
      e := [equation(u::EDF,v)$EEDF for u in symbols for v in ledf]
      l := [eval1(w,e) for w in l]
      matrix l

    combineFeatureCompatibility(C1:F,C2:F):F ==

      --                        C1 C2
      --    s(C1,C2) = -----------------------
      --               C1 C2 + (1 - C1)(1 - C2)

      C1*C2/((C1*C2)+(1$F-C1)*(1$F-C2))

    combineFeatureCompatibility(C1:F,L:LF):F ==

      empty?(L)$LF => C1
      C2 := combineFeatureCompatibility(C1,first(L)$LF)
      combineFeatureCompatibility(C2,rest(L)$LF)

    jacobian(v:VEDF,w:LS):Matrix EDF ==
      jacobian(v,w)$MultiVariableCalculusFunctions(S,EDF,VEDF,LS)

    sparsityIF(m:Matrix EDF):F ==
      l:LEDF :=parts m
      z:LEDF := [u for u in l | zero?(u)$EDF]
      ((#z)::F/(#l)::F)

    sum(a:EDF,b:EDF):EDF == a+b

    stiffnessAndStabilityOfODE(ode:ODEA):RSS ==
      odefns := copy ode.fn
      ls:LS := [subscript(Y,[coerce(n)])$Symbol for n in 1..# odefns]
      yvals := copy ode.yinit
      for i in 1..#yvals repeat
        zero?(yvals.i) => yvals.i := 0.1::DF
      yexpr := [coerce(v)@EDF for v in yvals]
      yv:VEDF := vector(yexpr)
      j1:MEDF := jacobian(odefns,ls)
      ej1:MEDF := eval(j1,ls,yv)
      ej1 := eval(ej1,variables(reduce(sum,members(ej1)$MEDF)),_
                  vector([(ode.xinit)::EDF]))
      ssf := stiffnessAndStabilityFactor(ej1)
      stability := 1.0-sqrt((ssf.stabilityFactor)*(2.0)/(pi()$F))
      stiffness := (1.0)-exp(-(ssf.stiffnessFactor)/(500.0))
      [stiffness,stability]

    stiffnessAndStabilityOfODEIF(ode:ODEA):RSS ==
      odefn := copy ode
      (t:=showIntensityFunctions(odefn)$ODEIntensityFunctionsTable) case ATT =>
        s:ATT := coerce(t)@ATT
        negative?(s.stiffness)$F => 
          ssf:RSS := stiffnessAndStabilityOfODE(odefn)
          s := [ssf.stiffnessFactor,ssf.stabilityFactor,s.expense,
                  s.accuracy,s.intermediateResults]
          r:ROA := [odefn,s]
          insert!(r)$ODEIntensityFunctionsTable
          ssf
        [s.stiffness,s.stability]
      ssf:RSS := stiffnessAndStabilityOfODE(odefn)
      s:ATT := [ssf.stiffnessFactor,ssf.stabilityFactor,-1.0,-1.0,-1.0]
      r:ROA := [odefn,s]
      insert!(r)$ODEIntensityFunctionsTable
      ssf