This file is indexed.

/usr/share/axiom-20170501/src/algebra/DBLRESP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
)abbrev package DBLRESP DoubleResultantPackage
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 12 July 1990
++ Description:
++ This package provides functions for computing the residues
++ of a function on an algebraic curve.

DoubleResultantPackage(F, UP, UPUP, R) : SIG == CODE where
  F : Field
  UP : UnivariatePolynomialCategory F
  UPUP: UnivariatePolynomialCategory Fraction UP
  R : FunctionFieldCategory(F, UP, UPUP)

  RF  ==> Fraction UP
  UP2 ==> SparseUnivariatePolynomial UP
  UP3 ==> SparseUnivariatePolynomial UP2

  SIG ==> with

    doubleResultant: (R, UP -> UP) -> UP
      ++ doubleResultant(f, ') returns p(x) whose roots are
      ++ rational multiples of the residues of f at all its
      ++ finite poles. Argument ' is the derivation to use.

  CODE ==> add

    import CommuteUnivariatePolynomialCategory(F, UP, UP2)
    import UnivariatePolynomialCommonDenominator(UP, RF, UPUP)

    UP22   : UP   -> UP2
    UP23   : UPUP -> UP3
    remove0: UP   -> UP             -- removes the power of x dividing p

    remove0 p ==
      primitivePart((p exquo monomial(1, minimumDegree p))::UP)

    UP22 p ==
      map(x+->x::UP, p)$UnivariatePolynomialCategoryFunctions2(F,UP,UP,UP2)

    UP23 p ==
      map(x+->UP22(retract(x)@UP),p)_
         $UnivariatePolynomialCategoryFunctions2(RF, UPUP, UP2, UP3)

    doubleResultant(h, derivation) ==
      cd := splitDenominator lift h
      d  := (cd.den exquo (g := gcd(cd.den, derivation(cd.den))))::UP
      r  := swap primitivePart swap resultant(UP23(cd.num)
          - ((monomial(1, 1)$UP :: UP2) * UP22(g * derivation d))::UP3,
                                              UP23 definingPolynomial())
      remove0 resultant(r, UP22 d)