This file is indexed.

/usr/share/axiom-20170501/src/algebra/DDFACT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
)abbrev package DDFACT DistinctDegreeFactorize
++ Author: P. Gianni, B.Trager
++ Date Created: 1983
++ Date Last Updated: 22 November 1993
++ Description:
++ Package for the factorization of a univariate polynomial with
++ coefficients in a finite field. The algorithm used is the
++ "distinct degree" algorithm of Cantor-Zassenhaus, modified
++ to use trace instead of the norm and a table for computing
++ Frobenius as suggested by Naudin and Quitte .
    
DistinctDegreeFactorize(F,FP) : SIG == CODE where
  F : FiniteFieldCategory
  FP : UnivariatePolynomialCategory(F)
 
  fUnion ==> Union("nil", "sqfr", "irred", "prime")
  FFE    ==> Record(flg:fUnion, fctr:FP, xpnt:Integer)
  NNI       == NonNegativeInteger
  Z         == Integer
  fact      == Record(deg : NNI,prod : FP)
  ParFact   == Record(irr:FP,pow:Z)
  FinalFact == Record(cont:F,factors:List(ParFact))
 
  SIG ==> with

      factor : FP -> Factored FP
        ++ factor(p) produces the complete factorization of the polynomial p.

      factorSquareFree : FP -> Factored FP
        ++ factorSquareFree(p) produces the complete factorization of the 
        ++ square free polynomial p.

      distdfact : (FP,Boolean) -> FinalFact
        ++ distdfact(p,sqfrflag) produces the complete factorization
        ++ of the polynomial p returning an internal data structure.
        ++ If argument sqfrflag is true, the polynomial is assumed square free.

      separateDegrees : FP -> List fact
        ++ separateDegrees(p) splits the square free polynomial p into 
        ++ factors each of which is a product of irreducibles of the 
        ++ same degree.

      separateFactors : List fact -> List FP
        ++ separateFactors(lfact) takes the list produced by separateDegrees
        ++ and produces the complete list of factors.

      exptMod : (FP,NNI,FP) -> FP
        ++ exptMod(u,k,v) raises the polynomial u to the kth power
        ++ modulo the polynomial v.

      trace2PowMod : (FP,NNI,FP) -> FP
        ++ trace2PowMod(u,k,v) produces the sum of u**(2**i) for i running
        ++ from 1 to k all computed modulo the polynomial v.

      tracePowMod : (FP,NNI,FP) -> FP
        ++ tracePowMod(u,k,v) produces the sum of \spad{u**(q**i)} 
        ++ for i running and q= size F

      irreducible? : FP -> Boolean
        ++ irreducible?(p) tests whether the polynomial p is irreducible.
 
  CODE ==> add

      --declarations
      D:=ModMonic(F,FP)
      import UnivariatePolynomialSquareFree(F,FP)
 
      --local functions
      notSqFr : (FP,FP -> List(FP)) -> List(ParFact)
      ddffact : FP -> List(FP)
      ddffact1 : (FP,Boolean) -> List fact
      ranpol :         NNI       -> FP
      
      charF : Boolean := characteristic()$F = 2

      --construct a random polynomial of random degree < d
      ranpol(d:NNI):FP ==
        k1: NNI := 0
        while k1 = 0 repeat k1 := random d
        -- characteristic F = 2
        charF =>
           u:=0$FP
           for j in 1..k1 repeat u:=u+monomial(random()$F,j)
           u
        u := monomial(1,k1)
        for j in 0..k1-1 repeat u:=u+monomial(random()$F,j)
        u
 
      notSqFr(m:FP,appl: FP->List(FP)):List(ParFact) ==
        factlist : List(ParFact) :=empty()
        llf : List FFE
        fln :List(FP) := empty()
        if (lcm:=leadingCoefficient m)^=1 then m:=(inv lcm)*m
        llf:= factorList(squareFree(m))
        for lf in llf repeat
          d1:= lf.xpnt
          pol := lf.fctr
          if (lcp:=leadingCoefficient pol)^=1 then pol := (inv lcp)*pol
          degree pol=1 => factlist:=cons([pol,d1]$ParFact,factlist)
          fln := appl(pol)
          factlist :=append([[pf,d1]$ParFact for pf in fln],factlist)
        factlist
 
      -- compute u**k mod v (requires call to setPoly of multiple of v)
      -- characteristic not equal 2
      exptMod(u:FP,k:NNI,v:FP):FP == (reduce(u)$D**k):FP rem v
 
      -- compute u**k mod v (requires call to setPoly of multiple of v)
      -- characteristic equal 2
      trace2PowMod(u:FP,k:NNI,v:FP):FP ==
        uu:=u
        for i in 1..k repeat uu:=(u+uu*uu) rem v
        uu

      -- compute u+u**q+..+u**(q**k) mod v 
      -- (requires call to setPoly of multiple of v) where q=size< F
      tracePowMod(u:FP,k:NNI,v:FP):FP ==
        u1 :D :=reduce(u)$D
        uu : D := u1
        for i in 1..k repeat uu:=(u1+frobenius uu) 
        (lift uu) rem v

      -- compute u**(1+q+..+q**k) rem v where q=#F 
      -- (requires call to setPoly of multiple of v)
      -- frobenius map is used
      normPowMod(u:FP,k:NNI,v:FP):FP ==
        u1 :D :=reduce(u)$D
        uu : D := u1
        for i in 1..k repeat uu:=(u1*frobenius uu) 
        (lift uu) rem v
 
      --find the factorization of m as product of factors each containing
      --terms of equal degree .
      -- if testirr=true the function returns the first factor found
      ddffact1(m:FP,testirr:Boolean):List(fact) ==
        p:=size$F
        dg:NNI :=0
        ddfact:List(fact):=empty()
        --evaluation of x**p mod m
        k1:NNI
        u:= m
        du := degree u
        setPoly u
        mon: FP := monomial(1,1)
        v := mon
        for k1 in 1.. while k1 <= (du quo 2) repeat
            v := lift frobenius reduce(v)$D
            g := gcd(v-mon,u)
            dg := degree g
            dg =0  => "next k1"
            if leadingCoefficient g ^=1 then g := (inv leadingCoefficient g)*g
            ddfact := cons([k1,g]$fact,ddfact)
            testirr => return ddfact
            u := u quo g
            du := degree u
            du = 0 => return ddfact
            setPoly u
        cons([du,u]$fact,ddfact)
 
      -- test irreducibility
      irreducible?(m:FP):Boolean ==
        mf:fact:=first ddffact1(m,true)
        degree m = mf.deg
 
      --export ddfact1
      separateDegrees(m:FP):List(fact) == ddffact1(m,false)
 
      --find the complete factorization of m, using the result of ddfact1
      separateFactors(distf : List fact) :List FP ==
        ddfact := distf
        n1:Integer
        p1:=size()$F
        if charF then n1:=length(p1)-1
        newaux,aux,ris : List FP
        ris := empty()
        t,fprod : FP
        for ffprod in ddfact repeat
          fprod := ffprod.prod
          d := ffprod.deg
          degree fprod = d => ris := cons(fprod,ris)
          aux:=[fprod]
          setPoly fprod
          while ^(empty? aux) repeat
            t := ranpol(2*d)
            if charF then t:=trace2PowMod(t,(n1*d-1)::NNI,fprod)
            else t:=exptMod(tracePowMod(t,(d-1)::NNI,fprod),
                                     (p1 quo 2)::NNI,fprod)-1$FP
            newaux:=empty()
            for u in aux repeat
                g := gcd(u,t)
                dg:= degree g
                dg=0 or dg = degree u => newaux:=cons(u,newaux)
                v := u quo g
                if dg=d then ris := cons(inv(leadingCoefficient g)*g,ris)
                        else newaux := cons(g,newaux)
                if degree v=d then ris := cons(inv(leadingCoefficient v)*v,ris)
                              else newaux := cons(v,newaux)
            aux:=newaux
        ris
 
      --distinct degree algorithm for monic ,square-free polynomial
      ddffact(m:FP):List(FP)==
        ddfact:=ddffact1(m,false)
        empty? ddfact => [m]
        separateFactors ddfact
 
      --factorize a general polynomial with distinct degree algorithm
      --if test=true no check is executed on square-free
      distdfact(m:FP,test:Boolean):FinalFact ==
        factlist: List(ParFact):= empty()
        fln : List(FP) :=empty()
 
        --make m monic
        if (lcm := leadingCoefficient m) ^=1 then m := (inv lcm)*m
 
        --is x**d factor of m?
        if (d := minimumDegree m)>0 then
          m := (monicDivide (m,monomial(1,d))).quotient
          factlist := [[monomial(1,1),d]$ParFact]
        d:=degree m
 
        --is m constant?
        d=0 => [lcm,factlist]$FinalFact
 
        --is m linear?
        d=1 => [lcm,cons([m,d]$ParFact,factlist)]$FinalFact
 
        --m is square-free
        test =>
          fln := ddffact m
          factlist := append([[pol,1]$ParFact for pol in fln],factlist)
          [lcm,factlist]$FinalFact
 
        --factorize the monic,square-free terms
        factlist:= append(notSqFr(m,ddffact),factlist)
        [lcm,factlist]$FinalFact
 
      --factorize the polynomial m
      factor(m:FP) ==
        m = 0 => 0
        flist := distdfact(m,false)
        makeFR(flist.cont::FP,[["prime",u.irr,u.pow]$FFE 
                                 for u in flist.factors])


      --factorize the square free polynomial m
      factorSquareFree(m:FP) ==
        m = 0 => 0
        flist := distdfact(m,true)
        makeFR(flist.cont::FP,[["prime",u.irr,u.pow]$FFE 
                                 for u in flist.factors])