This file is indexed.

/usr/share/axiom-20170501/src/algebra/DEFINTEF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
)abbrev package DEFINTEF ElementaryFunctionDefiniteIntegration
++ Author: Manuel Bronstein
++ Date Created: 14 April 1992
++ Date Last Updated: 2 February 1993
++ Description:
++ \spadtype{ElementaryFunctionDefiniteIntegration}
++ provides functions to compute definite
++ integrals of elementary functions.

ElementaryFunctionDefiniteIntegration(R, F) : SIG == CODE where
  R : Join(EuclideanDomain, OrderedSet, CharacteristicZero,
           RetractableTo Integer, LinearlyExplicitRingOver Integer)
  F : Join(TranscendentalFunctionCategory, PrimitiveFunctionCategory,
           AlgebraicallyClosedFunctionSpace R)

  B   ==> Boolean
  SE  ==> Symbol
  Z   ==> Integer
  P   ==> SparseMultivariatePolynomial(R, K)
  K   ==> Kernel F
  UP  ==> SparseUnivariatePolynomial F
  OFE ==> OrderedCompletion F
  U   ==> Union(f1:OFE, f2:List OFE, fail:"failed", pole:"potentialPole")

  SIG ==> with

    integrate : (F, SegmentBinding OFE) -> U
      ++ integrate(f, x = a..b) returns the integral of
      ++ \spad{f(x)dx} from a to b.
      ++ Error: if f has a pole for x between a and b.

    integrate : (F, SegmentBinding OFE, String) -> U
      ++ integrate(f, x = a..b, "noPole") returns the
      ++ integral of \spad{f(x)dx} from a to b.
      ++ If it is not possible to check whether f has a pole for x
      ++ between a and b (because of parameters), then this function
      ++ will assume that f has no such pole.
      ++ Error: if f has a pole for x between a and b or
      ++ if the last argument is not "noPole".

    innerint : (F, SE, OFE, OFE, B) -> U
      ++ innerint(f, x, a, b, ignore?) should be local but conditional

  CODE ==> add

    import ElementaryFunctionSign(R, F)
    import DefiniteIntegrationTools(R, F)
    import FunctionSpaceIntegration(R, F)

    polyIfCan   : (P, K) -> Union(UP, "failed")
    int         : (F, SE, OFE, OFE, B) -> U
    nopole      : (F, SE, K, OFE, OFE) -> U
    checkFor0   : (P, K, OFE, OFE) -> Union(B, "failed")
    checkSMP    : (P, SE, K, OFE, OFE) -> Union(B, "failed")
    checkForPole: (F, SE, K, OFE, OFE) -> Union(B, "failed")
    posit       : (F, SE, K, OFE, OFE) -> Union(B, "failed")
    negat       : (F, SE, K, OFE, OFE) -> Union(B, "failed")
    moreThan    : (OFE, Fraction Z) -> Union(B, "failed")

    if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer)
      and F has SpecialFunctionCategory then

        import PatternMatchIntegration(R, F)

        innerint(f, x, a, b, ignor?) ==
          ((u := int(f, x, a, b, ignor?)) case f1) or (u case f2)
            or ((v := pmintegrate(f, x, a, b)) case "failed") => u
          [v::F::OFE]

    else

      innerint(f, x, a, b, ignor?) == int(f, x, a, b, ignor?)

    integrate(f:F, s:SegmentBinding OFE) ==
      innerint(f, variable s, lo segment s, hi segment s, false)

    integrate(f:F, s:SegmentBinding OFE, str:String) ==
      innerint(f, variable s, lo segment s, hi segment s, ignore? str)

    int(f, x, a, b, ignor?) ==
      a = b => [0::OFE]
      k := kernel(x)@Kernel(F)
      (z := checkForPole(f, x, k, a, b)) case "failed" =>
        ignor? => nopole(f, x, k, a, b)
        ["potentialPole"]
      z::B => error "integrate: pole in path of integration"
      nopole(f, x, k, a, b)

    checkForPole(f, x, k, a, b) ==
      ((u := checkFor0(d := denom f, k, a, b)) case "failed") or (u::B) => u
      ((u := checkSMP(d, x, k, a, b)) case "failed") or (u::B) => u
      checkSMP(numer f, x, k, a, b)

    -- true if p has a zero between a and b exclusive
    checkFor0(p, x, a, b) ==
      (u := polyIfCan(p, x)) case UP => checkForZero(u::UP, a, b, false)
      (v := isTimes p) case List(P) =>
         for t in v::List(P) repeat
           ((w := checkFor0(t, x, a, b)) case "failed") or (w::B) => return w
         false
      (r := retractIfCan(p)@Union(K, "failed")) case "failed" => "failed"
      k := r::K
      -- functions with no real zeros
      is?(k, "exp"::SE) or is?(k, "acot"::SE) or is?(k, "cosh"::SE) => false
      -- special case for log
      is?(k, "log"::SE) =>
        (w := moreThan(b, 1)) case "failed" or not(w::B) => w
        moreThan(-a, -1)
      "failed"

    -- returns true if a > b, false if a < b, "failed" if can't decide
    moreThan(a, b) ==
      (r := retractIfCan(a)@Union(F, "failed")) case "failed" =>  -- infinite
        whatInfinity(a) > 0
      (u := retractIfCan(r::F)@Union(Fraction Z, "failed")) case "failed" =>
        "failed"
      u::Fraction(Z) > b

    -- true if p has a pole between a and b
    checkSMP(p, x, k, a, b) ==
      (u := polyIfCan(p, k)) case UP => false
      (v := isTimes p) case List(P) =>
         for t in v::List(P) repeat
           ((w := checkSMP(t, x, k, a, b)) case "failed") or (w::B) => return w
         false
      (v := isPlus p) case List(P) =>
         n := 0              -- number of summand having a pole
         for t in v::List(P) repeat
           (w := checkSMP(t, x, k, a, b)) case "failed" => return w
           if w::B then n := n + 1
         zero? n => false    -- no summand has a pole
         (n = 1) => true      -- only one summand has a pole
         "failed"            -- at least 2 summands have a pole
      (r := retractIfCan(p)@Union(K, "failed")) case "failed" => "failed"
      kk := r::K
      -- nullary operators have no poles
      nullary? operator kk => false
      f := first argument kk
      -- functions which are defined over all the reals:
      is?(kk, "exp"::SE) or is?(kk, "sin"::SE) or is?(kk, "cos"::SE)
        or is?(kk, "sinh"::SE) or is?(kk, "cosh"::SE) or is?(kk, "tanh"::SE)
          or is?(kk, "sech"::SE) or is?(kk, "atan"::SE) or is?(kk, "acot"::SE)
            or is?(kk, "asinh"::SE) => checkForPole(f, x, k, a, b)
      -- functions which are defined on (-1,+1):
      is?(kk, "asin"::SE) or is?(kk, "acos"::SE) or is?(kk, "atanh"::SE) =>
        ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w
        ((w := posit(f - 1, x, k, a, b)) case "failed") or (w::B) => w
        negat(f + 1, x, k, a, b)
      -- functions which are defined on (+1, +infty):
      is?(kk, "acosh"::SE) =>
        ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w
        negat(f - 1, x, k, a, b)
      -- functions which are defined on (0, +infty):
      is?(kk, "log"::SE) =>
        ((w := checkForPole(f, x, k, a, b)) case "failed") or (w::B) => w
        negat(f, x, k, a, b)
      "failed"

-- returns true if it is certain that f takes at least one strictly positive
-- value for x in (a,b), false if it is certain that f takes no strictly
-- positive value in (a,b), "failed" otherwise
-- f must be known to have no poles in (a,b)
    posit(f, x, k, a, b) ==
      z :=
        (r:= retractIfCan(a)@Union(F, "failed")) case "failed" => sign(f, x, a)
        sign(f, x, r::F, "right")
      (b1 := z case Z) and z::Z > 0 => true
      z :=
        (r:= retractIfCan(b)@Union(F, "failed")) case "failed" => sign(f, x, b)
        sign(f, x, r::F, "left")
      (b2 := z case Z) and z::Z > 0 => true
      b1 and b2 =>
        ((w:= checkFor0(numer f, k, a, b)) case "failed") or (w::B) => "failed"
        false
      "failed"

-- returns true if it is certain that f takes at least one strictly negative
-- value for x in (a,b), false if it is certain that f takes no strictly
-- negative value in (a,b), "failed" otherwise
-- f must be known to have no poles in (a,b)
    negat(f, x, k, a, b) ==
      z :=
        (r:= retractIfCan(a)@Union(F, "failed")) case "failed" => sign(f, x, a)
        sign(f, x, r::F, "right")
      (b1 := z case Z) and z::Z < 0 => true
      z :=
        (r:= retractIfCan(b)@Union(F, "failed")) case "failed" => sign(f, x, b)
        sign(f, x, r::F, "left")
      (b2 := z case Z) and z::Z < 0 => true
      b1 and b2 =>
        ((w:= checkFor0(numer f, k, a, b)) case "failed") or (w::B) => "failed"
        false
      "failed"

    -- returns a UP if p is only a poly w.r.t. the kernel x
    polyIfCan(p, x) ==
      q := univariate(p, x)
      ans:UP := 0
      while q ^= 0 repeat
        member?(x, tower(c := leadingCoefficient(q)::F)) => return "failed"
        ans := ans + monomial(c, degree q)
        q := reductum q
      ans

    -- integrate f for x between a and b assuming that f has no pole in between
    nopole(f, x, k, a, b) ==
      (u := integrate(f, x)) case F =>
        (v := computeInt(k, u::F, a, b, false)) case "failed" => ["failed"]
        [v::OFE]
      ans := empty()$List(OFE)
      for g in u::List(F) repeat
        (v := computeInt(k, g, a, b, false)) case "failed" => return ["failed"]
        ans := concat_!(ans, [v::OFE])
      [ans]