/usr/share/axiom-20170501/src/algebra/DERHAM.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 | )abbrev domain DERHAM DeRhamComplex
++ Author: Larry A. Lambe and Kurt Pagani
++ Date : 01/26/91.
++ Revised : 12/01/91.
++ References:
++ Flan03 Differential Forms with Applications to the Physical Sciences
++ Description:
++ The deRham complex of Euclidean space, that is, the
++ class of differential forms of arbitary degree over a coefficient ring.
++ See Flanders, Harley, Differential Forms, With Applications to the Physical
++ Sciences, New York, Academic Press, 1963.
DeRhamComplex(CoefRing,listIndVar) : SIG == CODE where
CoefRing : Join(Ring, OrderedSet)
listIndVar : List Symbol
ASY ==> AntiSymm(R,listIndVar)
DIFRING ==> DifferentialRing
LALG ==> LeftAlgebra
FMR ==> FreeMod(R,EAB)
I ==> Integer
L ==> List
EAB ==> ExtAlgBasis -- these are exponents of basis elements in order
NNI ==> NonNegativeInteger
O ==> OutputForm
R ==> Expression(CoefRing)
SMR ==> SquareMatrix(#listIndVar,R)
REABR ==> Record(k : EAB, c : R)
SIG ==> Join(LALG(R), RetractableTo(R)) with
leadingCoefficient : % -> R
++ leadingCoefficient(df) returns the leading
++ coefficient of differential form df.
++
++X der:=DERHAM(Integer,[x,y,z])
++X [dx,dy,dz]:=[generator(i)$der for i in 1..3]
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X leadingCoefficient sigma
leadingBasisTerm : % -> %
++ leadingBasisTerm(df) returns the leading
++ basis term of differential form df.
++
++X der:=DERHAM(Integer,[x,y,z])
++X [dx,dy,dz]:=[generator(i)$der for i in 1..3]
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X leadingBasisTerm sigma
reductum : % -> %
++ reductum(df), where df is a differential form, returns df minus
++ the leading term of df if df has two or more terms, and
++ 0 otherwise.
++
++X der:=DERHAM(Integer,[x,y,z])
++X [dx,dy,dz]:=[generator(i)$der for i in 1..3]
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X reductum sigma
coefficient : (%,%) -> R
++ coefficient(df,u), where df is a differential form,
++ returns the coefficient of df containing the basis term u
++ if such a term exists, and 0 otherwise.
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X R := Expression(Integer)
++X [dx,dy,dz] := [generator(i)$der for i in 1..3]
++X f : R := x**2*y*z-5*x**3*y**2*z**5
++X g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2
++X h : R :=x*y*z-2*x**3*y*z**2
++X alpha : der := f*dx + g*dy + h*dz
++X beta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy
++X gamma := alpha * beta
++X coefficient(gamma, dx*dy)
generator : NNI -> %
++ generator(n) returns the nth basis term for a differential form.
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X [dx,dy,dz] := [generator(i)$der for i in 1..3]
homogeneous? : % -> Boolean
++ homogeneous?(df) tests if all of the terms of
++ differential form df have the same degree.
++
++X der:=DERHAM(Integer,[x,y,z])
++X [dx,dy,dz]:=[generator(i)$der for i in 1..3]
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X homogeneous? sigma
++X a:BOP:=operator('a)
++X b:BOP:=operator('b)
++X c:BOP:=operator('c)
++X theta:=a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz
++X homogeneous? (sigma+theta)
retractable? : % -> Boolean
++ retractable?(df) tests if differential form df is a 0-form,
++ if degree(df) = 0.
++
++X der:=DERHAM(Integer,[x,y,z])
++X [dx,dy,dz]:=[generator(i)$der for i in 1..3]
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X retractable? sigma
degree : % -> NNI
++ degree(df) returns the homogeneous degree of differential form df.
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X t1 := generator(1)$der
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X a:BOP:=operator('a)
++X b:BOP:=operator('b)
++X c:BOP:=operator('c)
++X theta:der:=a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz
++X [degree x for x in [sigma,theta,t1]]
map : (R -> R, %) -> %
++ map(f,df) replaces each coefficient x of differential
++ form df by \spad{f(x)}.
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X R := Expression(Integer)
++X T(x:R):R == x^2
++X map(T,sigma)
totalDifferential : R -> %
++ totalDifferential(x) returns the total differential
++ (gradient) form for element x.
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X a : BOP := operator('a)
++X totalDifferential(a(x,y,z))$der
++X totalDifferential(x^2+y^2+sin(x)*z^2)$der
exteriorDifferential : % -> %
++ exteriorDifferential(df) returns the exterior
++ derivative (gradient, curl, divergence, ...) of
++ the differential form df.
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X R := Expression(Integer)
++X [dx,dy,dz] := [generator(i)$der for i in 1..3]
++X f : R := x**2*y*z-5*x**3*y**2*z**5
++X g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2
++X h : R :=x*y*z-2*x**3*y*z**2
++X alpha : der := f*dx + g*dy + h*dz
++X exteriorDifferential alpha
dim : % -> NNI
++ dim(s) returns the dimension of the underlying space
++ that is, dim ExtAlg = 2^dim
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X dim sigma
hodgeStar : (%,SMR) -> %
++ hodgeStar(a,s) computes the Hodge dual of the differential
++ form with respect to the metric g.
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X G:SquareMatrix(3,Integer):=diagonalMatrix([1,1,1])
++X hodgeStar(sigma,G)
dot : (%,%,SMR) -> R
++ dot(a,b,s) compute the inner product of two differential
++ forms w.r.t. g
++
++X der := DeRhamComplex(Integer,[x,y,z])
++X f:BOP:=operator('f)
++X g:BOP:=operator('g)
++X h:BOP:=operator('h)
++X sigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X G:SquareMatrix(3,Integer):=diagonalMatrix([1,1,1])
++X dot(sigma,sigma,G)
proj : (%,NNI) -> %
++ proj(a,n) projection to homogeneous terms of degree p
++
++X coefRing := Integer
++X R3 : List Symbol := [x,y,z]
++X D := DERHAM(coefRing,R3)
++X [dx,dy,dz] := [generator(i)$D for i in 1..3]
++X proj(dx+dy*dz+dx*dy*dz,2)
interiorProduct : (Vector(R),%,SMR) -> %
++ interiorProduct(vr,a,s) calculates the interior product
++ i_X(a) of the vector field X
++ with the differential form a (w.r.t. metric g)
++
++X coefRing := Integer
++X R3 : List Symbol := [x,y,z]
++X D := DERHAM(coefRing,R3)
++X [dx,dy,dz] := [generator(i)$D for i in 1..3]
++X f : BOP := operator('f)
++X g : BOP := operator('g)
++X h : BOP := operator('h)
++X a : BOP := operator('a)
++X b : BOP := operator('b)
++X c : BOP := operator('c)
++X U : BOP := operator('U)
++X V : BOP := operator('V)
++X W : BOP := operator('W)
++X v := vector[U(x,y,z),V(x,y,z),W(x,y,z)]
++X sigma := f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz
++X theta := a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz
++X G := diagonalMatrix([1,1,1])
++X interiorProduct(v,sigma,G)
++X interiorProduct(v,theta,G)
lieDerivative : (Vector(R),%,SMR) -> %
++ lieDerivative(vr,a,s) calculates the Lie derivative L_X(a)
++ of the differential form a with respect to the vector
++ field X (w.r.t. metric g)
++
++X coefRing := Integer
++X R3 : List Symbol := [x,y,z]
++X D := DERHAM(coefRing,R3)
++X [dx,dy,dz] := [generator(i)$D for i in 1..3]
++X a : BOP := operator('a)
++X b : BOP := operator('b)
++X c : BOP := operator('c)
++X U : BOP := operator('U)
++X V : BOP := operator('V)
++X W : BOP := operator('W)
++X v := vector[U(x,y,z),V(x,y,z),W(x,y,z)]
++X theta := a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz
++X G := diagonalMatrix([1,1,1])
++X eta := lieDerivative(v,theta,G)
CODE ==> ASY add
Rep := ASY
dim := #listIndVar
totalDifferential(f) ==
divs:=[differentiate(f,listIndVar.i)*generator(i)$ASY for i in 1..dim]
reduce("+",divs)
termDiff : (R, %) -> %
termDiff(r,e) ==
totalDifferential(r) * e
exteriorDifferential(x) ==
x = 0 => 0
termDiff(leadingCoefficient(x)$Rep,leadingBasisTerm x) + _
exteriorDifferential(reductum x)
lv := [concat("d",string(liv))$String::Symbol for liv in listIndVar]
displayList:EAB -> O
displayList(x):O ==
le: L I := exponents(x)$EAB
reduce(_*,[(lv.i)::O for i in 1..dim | ((le.i) = 1)])$L(O)
makeTerm:(R,EAB) -> O
makeTerm(r,x) ==
-- we know that r ^= 0
x = Nul(dim)$EAB => r::O
(r = 1) => displayList(x)
r::O * displayList(x)
terms : % -> List Record(k: EAB, c: R)
terms(a) ==
-- it is the case that there are at least two terms in a
a pretend List Record(k: EAB, c: R)
err1:="CoefRing has not IntegralDomain"
err2:="Metric tensor is not symmetric"
err3:="Degenerate metric"
err4:="Index out of range"
-- coord space dimension
dim(f) == dim
-- flip 0->1, 1->0
flip(b:ExtAlgBasis):ExtAlgBasis ==
bl := b pretend List(NNI)
[(i+1) rem 2 for i in bl] pretend ExtAlgBasis
-- list the positions of a's (a=0,1) in x
pos(x:EAB, a:NNI):List(NNI) ==
y:= x pretend List(NNI)
[j for j in 1..#y | y.j=a]
-- compute dot of singletons
dot1(r:Record(k:EAB,c:R),s:Record(k:EAB,c:R),g:SMR):R ==
not CoefRing has IntegralDomain => error(err1)
test(r.k ^= s.k) => 0::R
idx := pos(r.k,1)
idx = [] => r.c * s.c
reduce("*",[1/g(j,j) for j in idx]::List(R))*r.c*s.c
-- compute dot of singleton terms, general symmetric g
dot2(r:REABR, s:REABR, g:SMR):R ==
not CoefRing has IntegralDomain => error(err1)
pr := pos(r.k,1) -- list positions of 1 in r
ps := pos(s.k,1) -- list positions of 1 in s
test(#pr ^= #ps) => 0::R -- not same degree => 0
pr = [] => r.c * s.c -- empty pr,ps => product of coefs
G := inverse(g)::SMR -- compute the inverse of the metric g
test(#pr = 1) => G(pr.1,ps.1)::R * r.c * s.c -- only one element
M:Matrix(R) -- the minor
M := matrix([[G(pr.i,ps.j)::R for j in 1..#ps] for i in 1..#pr])
determinant(M)::R * r.c * s.c
-- export
dot(x,y,g) ==
not symmetric? g => error(err2)
tx:=terms(x)
ty:=terms(y)
tx = [] or ty = [] => 0::R
if diagonal? g then -- better performance
reduce("+",[dot2(tx.j,ty.j,g) for j in 1..#tx])
else
reduce("+",[dot1(tx.j,ty.j,g) for j in 1..#tx])
-- export
hodgeStar(x,g) ==
not CoefRing has IntegralDomain => error(err1)
not diagonal? g => error(err2)
v := sqrt(abs(determinant(g))) -- volume factor
v = 0 => error(err3)
t:=terms(x)
s:=[copy(r) for r in t] -- we need a copy of x
for j in 1..#t repeat
s.j.k := flip(s.j.k)
fs:=[s.j] pretend %
ft:=[t.j] pretend %
s.j.c := s.j.c * v * dot1(t.j,t.j,g)/leadingCoefficient(ft*fs)
s pretend %
-- export
proj(x,p) ==
p < 0 or p > dim => error(err4)
t := terms(x)
idx := [j for j in 1..#t | #pos(t.j.k,1)=p]
s := [copy(t.j) for j in idx::List(NNI)]
s pretend %
interiorProduct(v,x,g) ==
not CoefRing has IntegralDomain => error(err1)
f := reduce("+",[generator(i)$% for i in 1..dim]::List(%))
t := terms(f)
for j in 1..dim repeat
t.(dim-j+1).c := g(j,j)*v(j) -- reverse order
f -- term manipulations are destructive
dg:R := determinant(g)
sg:R := dg/abs(dg)
if odd?(dim) then
m:R := sg
else
m:R := (-1)**degree(x)*sg
m * hodgeStar(f*hodgeStar(x,g),g)
lieDerivative(v,x,g) ==
a:= exteriorDifferential(interiorProduct(v,x,g))
b:= interiorProduct(v,exteriorDifferential(x),g)
a+b
coerce(a):O ==
a = 0$Rep => 0$I::O
ta := terms a
null ta.rest => makeTerm(ta.first.c, ta.first.k)
reduce(_+,[makeTerm(t.c,t.k) for t in ta])$L(O)
|