This file is indexed.

/usr/share/axiom-20170501/src/algebra/DFINTTLS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
)abbrev package DFINTTLS DefiniteIntegrationTools
++ Author: Manuel Bronstein
++ Date Created: 15 April 1992
++ Date Last Updated: 24 February 1993
++ Description:
++ \spadtype{DefiniteIntegrationTools} provides common tools used
++ by the definite integration of both rational and elementary functions.

DefiniteIntegrationTools(R, F) : SIG == CODE where
  R : Join(GcdDomain, OrderedSet, RetractableTo Integer,
           LinearlyExplicitRingOver Integer)
  F : Join(TranscendentalFunctionCategory,
           AlgebraicallyClosedFunctionSpace R)

  B   ==> Boolean
  Z   ==> Integer
  Q   ==> Fraction Z
  SE  ==> Symbol
  P   ==> Polynomial R
  RF  ==> Fraction P
  UP  ==> SparseUnivariatePolynomial F
  K   ==> Kernel F
  OFE ==> OrderedCompletion F
  UPZ ==> SparseUnivariatePolynomial Z
  UPQ ==> SparseUnivariatePolynomial Q
  REC ==> Record(left:Q, right:Q)
  REC2==> Record(endpoint:Q, dir:Z)
  U   ==> Union(fin:REC, halfinf:REC2, all:"all", failed:"failed")
  IGNOR ==> "noPole"

  SIG ==> with

    ignore? : String -> B
      ++ ignore?(s) is true if s is the string that tells the integrator
      ++ to assume that the function has no pole in the integration interval.

    computeInt : (K, F, OFE, OFE, B) -> Union(OFE, "failed")
      ++ computeInt(x, g, a, b, eval?) returns the integral of \spad{f} for x
      ++ between a and b, assuming that g is an indefinite integral of
      ++ \spad{f} and \spad{f} has no pole between a and b.
      ++ If \spad{eval?} is true, then \spad{g} can be evaluated safely
      ++ at \spad{a} and \spad{b}, provided that they are finite values.
      ++ Otherwise, limits must be computed.

    checkForZero : (P,  SE, OFE, OFE, B) -> Union(B, "failed")
      ++ checkForZero(p, x, a, b, incl?) is true if p has a zero for x between
      ++ a and b, false otherwise, "failed" if this cannot be determined.
      ++ Check for a and b inclusive if incl? is true, exclusive otherwise.

    checkForZero : (UP, OFE, OFE, B) -> Union(B, "failed")
      ++ checkForZero(p, a, b, incl?) is true if p has a zero between
      ++ a and b, false otherwise, "failed" if this cannot be determined.
      ++ Check for a and b inclusive if incl? is true, exclusive otherwise.

  CODE ==> add

    import RealZeroPackage UPZ
    import InnerPolySign(F, UP)
    import ElementaryFunctionSign(R, F)
    import PowerSeriesLimitPackage(R, F)
    import UnivariatePolynomialCommonDenominator(Z, Q, UPQ)

    mkLogPos    : F -> F
    keeprec?    : (Q, REC) -> B
    negative    : F -> Union(B, "failed")
    mkKerPos    : K -> Union(F, "positive")
    posRoot     : (UP, B) -> Union(B, "failed")
    realRoot    : UP -> Union(B, "failed")
    var         : UP -> Union(Z, "failed")
    maprat      : UP -> Union(UPZ, "failed")
    variation   : (UP, F) -> Union(Z, "failed")
    infeval     : (UP, OFE) -> Union(F, "failed")
    checkHalfAx : (UP, F, Z, B) -> Union(B, "failed")
    findLimit   : (F, K, OFE, String, B) -> Union(OFE, "failed")
    checkBudan  : (UP, OFE, OFE, B) -> Union(B, "failed")
    checkDeriv  : (UP, OFE, OFE) -> Union(B, "failed")
    sameSign    : (UP, OFE, OFE) -> Union(B, "failed")
    intrat      : (OFE, OFE) -> U
    findRealZero: (UPZ, U, B) -> List REC

    variation(p, a)      == var p(monomial(1, 1)$UP - a::UP)

    keeprec?(a, rec)     == (a > rec.right) or (a < rec.left)

    checkHalfAx(p, a, d, incl?) ==
      posRoot(p(d * (monomial(1, 1)$UP - a::UP)), incl?)

    ignore? str ==
      str = IGNOR => true
      error "integrate: last argument must be 'noPole'"

    computeInt(k, f, a, b, eval?) ==
      is?(f, "integral"::SE) => "failed"
      if not eval? then f := mkLogPos f
      ((ib := findLimit(f, k, b, "left", eval?)) case "failed") or
         ((ia := findLimit(f, k, a, "right", eval?)) case "failed") => "failed"
      infinite?(ia::OFE) and (ia::OFE = ib::OFE) => "failed"
      ib::OFE - ia::OFE

    findLimit(f, k, a, dir, eval?) ==
      r := retractIfCan(a)@Union(F, "failed")
      r case F =>
        eval? => mkLogPos(eval(f, k, r::F))::OFE
        (u := limit(f, equation(k::F, r::F), dir)) case OFE => u::OFE
        "failed"
      (u := limit(f, equation(k::F::OFE, a))) case OFE => u::OFE
      "failed"

    mkLogPos f ==
      lk := empty()$List(K)
      lv := empty()$List(F)
      for k in kernels f | is?(k, "log"::SE) repeat
        if (v := mkKerPos k) case F then
          lk := concat(k, lk)
          lv := concat(v::F, lv)
      eval(f, lk, lv)

    mkKerPos k ==
      (u := negative(f := first argument k)) case "failed" =>
                                                     log(f**2) / (2::F)
      u::B => log(-f)
      "positive"

    negative f ==
      (u := sign f) case "failed" => "failed"
      u::Z < 0

    checkForZero(p, x, a, b, incl?) ==
      checkForZero(
        map(s+->s::F, univariate(p, x))_
         $SparseUnivariatePolynomialFunctions2(P, F),
            a, b, incl?)

    checkForZero(q, a, b, incl?) ==
      ground? q => false
      (d := maprat q) case UPZ and not((i := intrat(a, b)) case failed) =>
          not empty? findRealZero(d::UPZ, i, incl?)
      (u := checkBudan(q, a, b, incl?)) case "failed" =>
         incl? => checkDeriv(q, a, b)
         "failed"
      u::B

    maprat p ==
      ans:UPQ := 0
      while p ^= 0 repeat
        (r := retractIfCan(c := leadingCoefficient p)@Union(Q,"failed"))
          case "failed"  => return "failed"
        ans := ans + monomial(r::Q, degree p)
        p   := reductum p
      map(numer,(splitDenominator ans).num
         )$SparseUnivariatePolynomialFunctions2(Q, Z)

    intrat(a, b) ==
      (n := whatInfinity a) ^= 0 =>
        (r := retractIfCan(b)@Union(F,"failed")) case "failed" => ["all"]
        (q := retractIfCan(r::F)@Union(Q, "failed")) case "failed" =>
          ["failed"]
        [[q::Q, n]]
      (q := retractIfCan(retract(a)@F)@Union(Q,"failed")) case "failed"
        => ["failed"]
      (n := whatInfinity b) ^= 0 => [[q::Q, n]]
      (t := retractIfCan(retract(b)@F)@Union(Q,"failed")) case "failed"
        => ["failed"]
      [[q::Q, t::Q]]

    findRealZero(p, i, incl?) ==
      i case fin =>
        l := realZeros(p, r := i.fin)
        incl? => l
        select_!(s+->keeprec?(r.left, s) and keeprec?(r.right, s), l)
      i case all => realZeros p
      i case halfinf =>
        empty?(l := realZeros p) => empty()
        bounds:REC :=
          i.halfinf.dir > 0 => [i.halfinf.endpoint, "max"/[t.right for t in l]]
          ["min"/[t.left for t in l], i.halfinf.endpoint]
        l := [u::REC for t in l | (u := refine(p, t, bounds)) case REC]
        incl? => l
        ep := i.halfinf.endpoint
        select_!(s+->keeprec?(ep, s), l)
      error "findRealZero: should not happpen"

    checkBudan(p, a, b, incl?) ==
      r := retractIfCan(b)@Union(F, "failed")
      (n := whatInfinity a) ^= 0 =>
        r case "failed" => realRoot p
        checkHalfAx(p, r::F, n, incl?)
      (za? := zero? p(aa := retract(a)@F)) and incl? => true
      (n := whatInfinity b) ^= 0 => checkHalfAx(p, aa, n, incl?)
      (zb? := zero? p(bb := r::F)) and incl? => true
      (va := variation(p, aa)) case "failed" or
                   (vb := variation(p, bb)) case "failed" => "failed"
      m:Z := 0
      if za? then m := inc m
      if zb? then m := inc m
      odd?(v := va::Z - vb::Z) =>          -- p has an odd number of roots
        incl? or even? m => true
        (v = 1) => false
        "failed"
      zero? v => false                     -- p has no roots
      (m = 1) => true                     -- p has an even number > 0 of roots
      "failed"

    checkDeriv(p, a, b) ==
      (r := retractIfCan(p)@Union(F, "failed")) case F => zero?(r::F)
      (s := sameSign(p, a, b)) case "failed" => "failed"
      s::B =>                  -- p has the same nonzero sign at a and b
        (u := checkDeriv(differentiate p,a,b)) case "failed" => "failed"
        u::B => "failed"
        false
      true

    realRoot p ==
      (b := posRoot(p, true)) case "failed" => "failed"
      b::B => true
      posRoot(p(p - monomial(1, 1)$UP), true)

    sameSign(p, a, b) ==
      (ea := infeval(p, a)) case "failed" => "failed"
      (eb := infeval(p, b)) case "failed" => "failed"
      (s := sign(ea::F * eb::F)) case "failed" => "failed"
      s::Z > 0

    -- returns true if p has a positive root. Include 0 is incl0? is true
    posRoot(p, incl0?) ==
      (z0? := zero?(coefficient(p, 0))) and incl0? => true
      (v := var p) case "failed" => "failed"
      odd?(v::Z) =>            -- p has an odd number of positive roots
        incl0? or not(z0?) => true
        (v::Z) = 1 => false
        "failed"
      zero?(v::Z) => false     -- p has no positive roots
      z0? => true              -- p has an even number > 0 of positive roots
      "failed"

    infeval(p, a) ==
      zero?(n := whatInfinity a) => p(retract(a)@F)
      (u := signAround(p, n, sign)) case "failed" => "failed"
      u::Z::F

    var q ==
      i:Z := 0
      (lastCoef := negative leadingCoefficient q) case "failed" =>
        "failed"
      while ((q := reductum q) ^= 0) repeat
        (next := negative leadingCoefficient q) case "failed" =>
          return "failed"
        if ((not(lastCoef::B)) and next::B) or
                        ((not(next::B)) and lastCoef::B) then i := i + 1
        lastCoef := next
      i