/usr/share/axiom-20170501/src/algebra/DFLOAT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | )abbrev domain DFLOAT DoubleFloat
++ Author: Michael Monagan
++ Date Created: January 1988
++ References:
++ Corl00 According to Abramowitz and Stegun or arccoth needn't be Uncouth
++ Fate01a A Critique of OpenMath and Thoughts on Encoding Mathematics
++ Description:
++ \spadtype{DoubleFloat} is intended to make accessible
++ hardware floating point arithmetic in Axiom, either native double
++ precision, or IEEE. On most machines, there will be hardware support for
++ the arithmetic operations: ++ +, *, / and possibly also the
++ sqrt operation.
++ The operations exp, log, sin, cos, atan are normally coded in
++ software based on minimax polynomial/rational approximations.
++
++ Some general comments about the accuracy of the operations:
++ the operations +, *, / and sqrt are expected to be fully accurate.
++ The operations exp, log, sin, cos and atan are not expected to be
++ fully accurate. In particular, sin and cos
++ will lose all precision for large arguments.
++
++ The Float domain provides an alternative to the DoubleFloat domain.
++ It provides an arbitrary precision model of floating point arithmetic.
++ This means that accuracy problems like those above are eliminated
++ by increasing the working precision where necessary. \spadtype{Float}
++ provides some special functions such as erf, the error function
++ in addition to the elementary functions. The disadvantage of Float is that
++ it is much more expensive than small floats when the latter can be used.
DoubleFloat() : SIG == CODE where
SIG ==> Join(FloatingPointSystem, DifferentialRing, OpenMath,
TranscendentalFunctionCategory, SpecialFunctionCategory, _
ConvertibleTo InputForm) with
_/ : (%, Integer) -> %
++ x / i computes the division from x by an integer i.
_*_* : (%,%) -> %
++ x ** y returns the yth power of x (equal to \spad{exp(y log x)}).
exp1 : () -> %
++ exp1() returns the natural log base \spad{2.718281828...}.
hash : % -> Integer
++ hash(x) returns the hash key for x
log2 : % -> %
++ log2(x) computes the logarithm with base 2 for x.
log10 : % -> %
++ log10(x) computes the logarithm with base 10 for x.
atan : (%,%) -> %
++ atan(x,y) computes the arc tangent from x with phase y.
Gamma : % -> %
++ Gamma(x) is the Euler Gamma function.
Beta : (%,%) -> %
++ Beta(x,y) is \spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.
doubleFloatFormat : String -> String
++doubleFloatFormat changes the output format for doublefloats
++using lisp format strings
rationalApproximation : (%, NonNegativeInteger) -> Fraction Integer
++rationalApproximation(f, n) computes a rational approximation
++r to f with relative error \spad{< 10**(-n)}.
rationalApproximation : (%, NonNegativeInteger, NonNegativeInteger) -> _
Fraction Integer
++rationalApproximation(f, n, b) computes a rational
++approximation r to f with relative error \spad{< b**(-n)}
++(that is, \spad{|(r-f)/f| < b**(-n)}).
machineFraction : % -> Fraction Integer
++machineFraction(x) returns a bit-exact fraction of the machine
++floating point number using the common lisp integer-decode-float
++function. See Steele, ISBN 0-13-152414-3 p354
++This function can be used to print results which do not depend
++on binary-to-decimal conversions
++
++X a:DFLOAT:=-1.0/3.0
++X machineFraction a
integerDecode : % -> List Integer
++integerDecode(x) returns the multiple values of the common
++lisp integer-decode-float function.
++See Steele, ISBN 0-13-152414-3 p354. This function can be used
++to ensure that the results are bit-exact and do not depend on
++the binary-to-decimal conversions.
++
++X a:DFLOAT:=-1.0/3.0
++X integerDecode a
CODE ==> add
format: String := "~G"
MER ==> Record(MANTISSA:Integer,EXPONENT:Integer)
manexp: % -> MER
doubleFloatFormat(s:String): String ==
ss: String := format
format := s
ss
OMwrite(x: %): String ==
s: String := ""
sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
dev: OpenMathDevice := OMopenString(sp @ String, OMencodingXML)
OMputObject(dev)
OMputFloat(dev, convert x)
OMputEndObject(dev)
OMclose(dev)
s := OM_-STRINGPTRTOSTRING(sp)$Lisp @ String
s
OMwrite(x: %, wholeObj: Boolean): String ==
s: String := ""
sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
dev: OpenMathDevice := OMopenString(sp @ String, OMencodingXML)
if wholeObj then
OMputObject(dev)
OMputFloat(dev, convert x)
if wholeObj then
OMputEndObject(dev)
OMclose(dev)
s := OM_-STRINGPTRTOSTRING(sp)$Lisp @ String
s
OMwrite(dev: OpenMathDevice, x: %): Void ==
OMputObject(dev)
OMputFloat(dev, convert x)
OMputEndObject(dev)
OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
if wholeObj then
OMputObject(dev)
OMputFloat(dev, convert x)
if wholeObj then
OMputEndObject(dev)
checkComplex(x:%):% == C_-TO_-R(x)$Lisp
-- In AKCL we used to have to make the arguments to ASIN ACOS ACOSH ATANH
-- complex to get the correct behaviour.
--makeComplex(x: %):% == COMPLEX(x, 0$%)$Lisp
machineFraction(df:%):Fraction(Integer) ==
numer:Integer:=INTEGER_-DECODE_-FLOAT_-NUMERATOR(df)$Lisp
denom:Integer:=INTEGER_-DECODE_-FLOAT_-DENOMINATOR(df)$Lisp
sign:Integer:=INTEGER_-DECODE_-FLOAT_-SIGN(df)$Lisp
sign*numer/denom
integerDecode(df:%):List(Integer) ==
numer:Integer:=INTEGER_-DECODE_-FLOAT_-NUMERATOR(df)$Lisp
exp:Integer:=INTEGER_-DECODE_-FLOAT_-EXPONENT(df)$Lisp
sign:Integer:=INTEGER_-DECODE_-FLOAT_-SIGN(df)$Lisp
[numer,exp,sign]
base() == FLOAT_-RADIX(0$%)$Lisp
mantissa x == manexp(x).MANTISSA
exponent x == manexp(x).EXPONENT
precision() == FLOAT_-DIGITS(0$%)$Lisp
bits() ==
base() = 2 => precision()
base() = 16 => 4*precision()
wholePart(precision()*log2(base()::%))::PositiveInteger
max() == MOST_-POSITIVE_-DOUBLE_-FLOAT$Lisp
min() == MOST_-NEGATIVE_-DOUBLE_-FLOAT$Lisp
order(a) == precision() + exponent a - 1
0 == FLOAT(0$Lisp,MOST_-POSITIVE_-DOUBLE_-FLOAT$Lisp)$Lisp
1 == FLOAT(1$Lisp,MOST_-POSITIVE_-DOUBLE_-FLOAT$Lisp)$Lisp
-- rational approximation to e accurate to 23 digits
exp1() == FLOAT(534625820200,MOST_-POSITIVE_-DOUBLE_-FLOAT$Lisp)$Lisp / _
FLOAT(196677847971,MOST_-POSITIVE_-DOUBLE_-FLOAT$Lisp)$Lisp
pi() == FLOAT(PI$Lisp,MOST_-POSITIVE_-DOUBLE_-FLOAT$Lisp)$Lisp
coerce(x:%):OutputForm ==
x >= 0 => message(FORMAT(NIL$Lisp,format,x)$Lisp @ String)
- (message(FORMAT(NIL$Lisp,format,-x)$Lisp @ String))
convert(x:%):InputForm == convert(x pretend DoubleFloat)$InputForm
x < y == DFLESSTHAN(x,y)$Lisp
- x == DFUNARYMINUS(x)$Lisp
x + y == DFADD(x,y)$Lisp
x:% - y:% == DFSUBTRACT(x,y)$Lisp
x:% * y:% == DFMULTIPLY(x,y)$Lisp
i:Integer * x:% == DFINTEGERMULTIPLY(i,x)$Lisp
max(x,y) == DFMAX(x,y)$Lisp
min(x,y) == DFMIN(x,y)$Lisp
x = y == DFEQL(x,y)$Lisp
x:% / i:Integer == DFINTEGERDIVIDE(x,i)$Lisp
sqrt x == checkComplex DFSQRT(x)$Lisp
log10 x == checkComplex DFLOG(x,10)$Lisp
x:% ** i:Integer == DFINTEGEREXPT(x,i)$Lisp
x:% ** y:% == checkComplex DFEXPT(x,y)$Lisp
coerce(i:Integer):% == FLOAT(i,MOST_-POSITIVE_-DOUBLE_-FLOAT$Lisp)$Lisp
exp x == DFEXP(x)$Lisp
log x == checkComplex DFLOGE(x)$Lisp
log2 x == checkComplex DFLOG(x,2)$Lisp
sin x == DFSIN(x)$Lisp
cos x == DFCOS(x)$Lisp
tan x == DFTAN(x)$Lisp
cot x == COT(x)$Lisp
sec x == SEC(x)$Lisp
csc x == CSC(x)$Lisp
asin x == checkComplex DFASIN(x)$Lisp -- can be complex
acos x == checkComplex DFACOS(x)$Lisp -- can be complex
atan x == DFATAN(x)$Lisp
acsc x == checkComplex ACSC(x)$Lisp
acot x == ACOT(x)$Lisp
asec x == checkComplex ASEC(x)$Lisp
sinh x == SINH(x)$Lisp
cosh x == COSH(x)$Lisp
tanh x == TANH(x)$Lisp
csch x == CSCH(x)$Lisp
coth x == COTH(x)$Lisp
sech x == SECH(x)$Lisp
asinh x == DFASINH(x)$Lisp
acosh x == checkComplex DFACOSH(x)$Lisp -- can be complex
atanh x == checkComplex DFATANH(x)$Lisp -- can be complex
acsch x == ACSCH(x)$Lisp
acoth x == checkComplex ACOTH(x)$Lisp
asech x == checkComplex ASECH(x)$Lisp
x:% / y:% == DFDIVIDE(x,y)$Lisp
negative? x == DFMINUSP(x)$Lisp
zero? x == ZEROP(x)$Lisp
hash x == SXHASH(x)$Lisp
recip(x) == (zero? x => "failed"; 1 / x)
differentiate x == 0
SFSFUN ==> DoubleFloatSpecialFunctions()
sfx ==> x pretend DoubleFloat
sfy ==> y pretend DoubleFloat
airyAi x == airyAi(sfx)$SFSFUN pretend %
airyBi x == airyBi(sfx)$SFSFUN pretend %
besselI(x,y) == besselI(sfx,sfy)$SFSFUN pretend %
besselJ(x,y) == besselJ(sfx,sfy)$SFSFUN pretend %
besselK(x,y) == besselK(sfx,sfy)$SFSFUN pretend %
besselY(x,y) == besselY(sfx,sfy)$SFSFUN pretend %
Beta(x,y) == Beta(sfx,sfy)$SFSFUN pretend %
digamma x == digamma(sfx)$SFSFUN pretend %
Gamma x == Gamma(sfx)$SFSFUN pretend %
polygamma(x,y) ==
if (n := retractIfCan(x@%)@Union(Integer, "failed")) case Integer _
and n >= 0
then polygamma(n::Integer::NonNegativeInteger,sfy)$SFSFUN pretend %
else error "polygamma: first argument should be a nonnegative integer"
wholePart x == TRUNCATE(x)$Lisp
float(ma,ex,b) == ma*(b::%)**ex
convert(x:%):DoubleFloat == x pretend DoubleFloat
convert(x:%):Float == convert(x pretend DoubleFloat)$Float
rationalApproximation(x, d) == rationalApproximation(x, d, 10)
atan(x,y) ==
x = 0 =>
y > 0 => pi()/2
y < 0 => -pi()/2
0
-- Only count on first quadrant being on principal branch.
theta := atan abs(y/x)
if x < 0 then theta := pi() - theta
if y < 0 then theta := - theta
theta
retract(x:%):Fraction(Integer) ==
rationalApproximation(x, (precision() - 1)::NonNegativeInteger, base())
retractIfCan(x:%):Union(Fraction Integer, "failed") ==
rationalApproximation(x, (precision() - 1)::NonNegativeInteger, base())
retract(x:%):Integer ==
x = ((n := wholePart x)::%) => n
error "Not an integer"
retractIfCan(x:%):Union(Integer, "failed") ==
x = ((n := wholePart x)::%) => n
"failed"
sign(x) == retract FLOAT_-SIGN(x,1)$Lisp
abs x == FLOAT_-SIGN(1,x)$Lisp
manexp(x) ==
zero? x => [0,0]
s := sign x; x := abs x
if x > max()$% then return [s*mantissa(max())+1,exponent max()]
me:Record(man:%,exp:Integer) := MANEXP(x)$Lisp
two53:= base()**precision()
[s*wholePart(two53 * me.man ),me.exp-precision()]
rationalApproximation(f,d,b) ==
-- this algorithm expresses f as n / d where d = BASE ** k
-- then all arithmetic operations are done over the integers
(nu, ex) := manexp f
BASE := base()
ex >= 0 => (nu * BASE ** (ex::NonNegativeInteger))::Fraction(Integer)
de :Integer := BASE**((-ex)::NonNegativeInteger)
b < 2 => error "base must be > 1"
tol := b**d
s := nu; t := de
p0:Integer := 0; p1:Integer := 1; q0:Integer := 1; q1:Integer := 0
repeat
(q,r) := divide(s, t)
p2 := q*p1+p0
q2 := q*q1+q0
r = 0 or tol*abs(nu*q2-de*p2) < de*abs(p2) => return(p2/q2)
(p0,p1) := (p1,p2)
(q0,q1) := (q1,q2)
(s,t) := (t,r)
x:% ** r:Fraction Integer ==
zero? x =>
zero? r => error "0**0 is undefined"
negative? r => error "division by 0"
0
zero? r or (x = 1) => 1
(r = 1) => x
n := numer r
d := denom r
negative? x =>
odd? d =>
odd? n => return -((-x)**r)
return ((-x)**r)
error "negative root"
d = 2 => sqrt(x) ** n
x ** (n::% / d::%)
|