This file is indexed.

/usr/share/axiom-20170501/src/algebra/DHMATRIX.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
)abbrev domain DHMATRIX DenavitHartenbergMatrix
++ Author: Timothy Daly
++ Date Created: June 26, 1991
++ Date Last Updated: 26 June 1991
++ Description:
++ 4x4 Matrices for coordinate transformations\br
++ This package contains functions to create 4x4 matrices
++ useful for rotating and transforming coordinate systems.
++ These matrices are useful for graphics and robotics.
++ (Reference: Robot Manipulators Richard Paul MIT Press 1981) 
++
++ A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:\br
++ \tab{5}\spad{nx ox ax px}\br
++ \tab{5}\spad{ny oy ay py}\br
++ \tab{5}\spad{nz oz az pz}\br
++ \tab{5}\spad{0  0  0  1}\br
++ (n, o, and a are the direction cosines)

DenavitHartenbergMatrix(R) : SIG == CODE where
  R : Join(Field,  TranscendentalFunctionCategory)

-- for the implementation of dhmatrix
  minrow ==> 1
  mincolumn ==> 1
--
  nx ==> x(1,1)::R
  ny ==> x(2,1)::R
  nz ==> x(3,1)::R
  ox ==> x(1,2)::R
  oy ==> x(2,2)::R
  oz ==> x(3,2)::R
  ax ==> x(1,3)::R
  ay ==> x(2,3)::R
  az ==> x(3,3)::R
  px ==> x(1,4)::R
  py ==> x(2,4)::R
  pz ==> x(3,4)::R
  row ==> Vector(R)
  col ==> Vector(R)
  radians ==> pi()/180

  SIG ==> MatrixCategory(R,row,col) with

   "*" : (%, Point R) -> Point R
     ++ t*p applies the dhmatrix t to point p
     ++
     ++X rotatex(30)*point([1,2,3])

   identity : () -> %
     ++ identity() create the identity dhmatrix
     ++
     ++ identity()

   rotatex : R -> %
     ++ rotatex(r) returns a dhmatrix for rotation about axis x for r degrees
     ++
     ++X rotatex(30)

   rotatey : R -> %
     ++ rotatey(r) returns a dhmatrix for rotation about axis y for r degrees
     ++
     ++X rotatey(30)

   rotatez : R -> %
     ++ rotatez(r) returns a dhmatrix for rotation about axis z for r degrees
     ++
     ++X rotatez(30)

   scale : (R,R,R) -> %
     ++ scale(sx,sy,sz) returns a dhmatrix for scaling in the x, y and z
     ++ directions
     ++
     ++X scale(0.5,0.5,0.5)

   translate : (R,R,R) -> %
     ++ translate(x,y,z) returns a dhmatrix for translation by x, y, and z
     ++
     ++X translate(1.0,2.0,3.0)
 
  CODE ==> Matrix(R) add

    identity() == matrix([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])

    d * p ==
       v := p pretend Vector R
       v := concat(v, 1$R)
       v := d * v
       point ([v.1, v.2, v.3]$List(R))

    rotatex(degree) ==
     angle := degree * pi() / 180::R
     cosAngle := cos(angle)
     sinAngle := sin(angle)
     matrix(_
      [[1,     0,           0,      0], _
       [0, cosAngle, -sinAngle, 0], _
       [0, sinAngle,  cosAngle, 0], _
       [0,     0,           0,      1]])

    rotatey(degree) ==
     angle := degree * pi() / 180::R
     cosAngle := cos(angle)
     sinAngle := sin(angle)
     matrix(_
      [[ cosAngle, 0, sinAngle, 0], _
       [    0,       1,     0,      0], _
       [-sinAngle, 0, cosAngle, 0], _
       [    0,       0,     0,      1]])

    rotatez(degree) ==
     angle := degree * pi() / 180::R
     cosAngle := cos(angle)
     sinAngle := sin(angle)
     matrix(_
      [[cosAngle, -sinAngle, 0, 0], _
       [sinAngle,  cosAngle, 0, 0], _
       [   0,           0,       1, 0], _
       [   0,           0,       0, 1]])

    scale(scalex, scaley, scalez) ==
     matrix(_
      [[scalex, 0      ,0     , 0], _
       [0     , scaley ,0     , 0], _
       [0     , 0,      scalez, 0], _
       [0     , 0,      0     , 1]])

    translate(x,y,z) ==
     matrix(_
      [[1,0,0,x],_
       [0,1,0,y],_
       [0,0,1,z],_
       [0,0,0,1]])