This file is indexed.

/usr/share/axiom-20170501/src/algebra/DIOSP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
)abbrev package DIOSP DiophantineSolutionPackage
++ Author: A. Fortenbacher
++ Date Created: 29 March 1991
++ Date Last Updated: 29 March 1991
++ Reference:
++   M. Clausen, A. Fortenbacher: Efficient Solution of
++   Linear Diophantine Equations. in JSC (1989) 8, 201-216
++ Description:
++ Any solution of a homogeneous linear Diophantine equation
++ can be represented as a sum of minimal solutions, which
++ form a "basis" (a minimal solution cannot be represented
++ as a nontrivial sum of solutions)
++ in the case of an inhomogeneous linear Diophantine equation,
++ each solution is the sum of a inhomogeneous solution and
++ any number of homogeneous solutions
++ therefore, it suffices to compute two sets:\br
++ \tab{5}1. all minimal inhomogeneous solutions\br
++ \tab{5}2. all minimal homogeneous solutions\br
++ the algorithm implemented is a completion procedure, which
++ enumerates all solutions in a recursive depth-first-search
++ it can be seen as finding monotone paths in a graph
++ for more details see Reference
 
DiophantineSolutionPackage() : SIG == CODE where
 
  B ==> Boolean
  I ==> Integer
  NI ==> NonNegativeInteger
 
  LI ==> List(I)
  VI ==> Vector(I)
  VNI ==> Vector(NI)
 
  POLI ==> Polynomial(I)
  EPOLI ==> Equation(POLI)
  LPOLI ==> List(POLI)
 
  S ==> Symbol
  LS ==> List(S)
 
  ListSol ==> List(VNI)
  Solutions ==> Record(varOrder: LS, inhom: Union(ListSol,"failed"),
                       hom: ListSol)
 
  Node ==> Record(vert: VI, free: B)
  Graph ==> Record(vn: Vector(Node), dim : NI, zeroNode: I)
 
  SIG ==> with
 
    dioSolve : EPOLI -> Solutions
      ++ dioSolve(u) computes a basis of all minimal solutions for 
      ++ linear homogeneous Diophantine equation u,
      ++ then all minimal solutions of inhomogeneous equation
 
  CODE ==> add
 
    import I
    import POLI
 
    -- local function specifications
 
    initializeGraph: (LPOLI, I) -> Graph
    createNode: (I, VI, NI, I) -> Node
    findSolutions: (VNI, I, I, I, Graph, B) -> ListSol
    verifyMinimality: (VNI, Graph, B) -> B
    verifySolution: (VNI, I, I, I, Graph) -> B
 
    -- exported functions
 
    dioSolve(eq) ==
      p := lhs(eq) - rhs(eq)
      n := totalDegree(p)
      n = 0 or n > 1 =>
        error "a linear Diophantine equation is expected"
      mon := empty()$LPOLI
      c : I := 0
      for x in monomials(p) repeat
        ground?(x) =>
          c := ground(x) :: I
        mon := cons(x, mon)$LPOLI
      graph := initializeGraph(mon, c)
      sol := zero(graph.dim)$VNI
      hs := findSolutions(sol, graph.zeroNode, 1, 1, graph, true)
      ihs : ListSol :=
        c = 0 => [sol]
        findSolutions(sol, graph.zeroNode + c, 1, 1, graph, false)
      vars := [first(variables(x))$LS for x in mon]
      [vars, if empty?(ihs)$ListSol then "failed" else ihs, hs]
 
    -- local functions
 
    initializeGraph(mon, c) ==
      coeffs := vector([first(coefficients(x))$LI for x in mon])$VI
      k := #coeffs
      m := min(c, reduce(min, coeffs)$VI)
      n := max(c, reduce(max, coeffs)$VI)
      [[createNode(i, coeffs, k, 1 - m) for i in m..n], k, 1 - m]
 
    createNode(ind, coeffs, k, zeroNode) ==
      -- create vertices from node ind to other nodes
      v := zero(k)$VI
      for i in 1..k repeat
        ind > 0 =>
          coeffs.i < 0 =>
            v.i := zeroNode + ind + coeffs.i
        coeffs.i > 0 =>
          v.i := zeroNode + ind + coeffs.i
      [v, true]
 
    findSolutions(sol, ind, m, n, graph, flag) ==
      -- return all solutions (paths) from node ind to node zeroNode
      sols := empty()$ListSol
      node := graph.vn.ind
      node.free =>
        node.free := false
        v := node.vert
        k := if ind < graph.zeroNode then m else n
        for i in k..graph.dim repeat
          x := sol.i
          v.i > 0 =>  -- vertex exists to other node
            sol.i := x + 1
            v.i = graph.zeroNode =>  -- solution found
              verifyMinimality(sol, graph, flag) =>
                sols := cons(copy(sol)$VNI, sols)$ListSol
                sol.i := x
              sol.i := x
            s :=
              ind < graph.zeroNode =>
                findSolutions(sol, v.i, i, n, graph, flag)
              findSolutions(sol, v.i, m, i, graph, flag)
            sols := append(s, sols)$ListSol
            sol.i := x
        node.free := true
        sols
      sols
 
    verifyMinimality(sol, graph, flag) ==
      -- test whether sol contains a minimal homogeneous solution
      flag =>  -- sol is a homogeneous solution
        i := 1
        while sol.i = 0 repeat
          i := i + 1
        x := sol.i
        sol.i := (x - 1) :: NI
        flag := verifySolution(sol, graph.zeroNode, 1, 1, graph)
        sol.i := x
        flag
      verifySolution(sol, graph.zeroNode, 1, 1, graph)
 
    verifySolution(sol, ind, m, n, graph) ==
      -- test whether sol contains a path from ind to zeroNode
      flag := true
      node := graph.vn.ind
      v := node.vert
      k := if ind < graph.zeroNode then m else n
      for i in k..graph.dim while flag repeat
        x := sol.i
        x > 0 and v.i > 0 =>  -- vertex exists to other node
          sol.i := (x - 1) :: NI
          v.i = graph.zeroNode =>  -- solution found
            flag := false
            sol.i := x
          flag :=
            ind < graph.zeroNode =>
              verifySolution(sol, v.i, i, n, graph)
            verifySolution(sol, v.i, m, i, graph)
          sol.i := x
      flag