This file is indexed.

/usr/share/axiom-20170501/src/algebra/DRAWCX.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
)abbrev package DRAWCX DrawComplex
++ Description: 
++ \axiomType{DrawComplex} provides some facilities
++ for drawing complex functions.

DrawComplex() : SIG == CODE where

  C ==> Complex DoubleFloat
  S ==> Segment DoubleFloat
  PC ==> Record(rr:SF, th:SF)
  INT ==> Integer
  SF ==> DoubleFloat
  NNI ==> NonNegativeInteger
  VIEW3D ==> ThreeDimensionalViewport
  ARRAY2 ==> TwoDimensionalArray

  SIG ==> with

    drawComplex : (C -> C,S,S,Boolean) -> VIEW3D
      ++ drawComplex(f,rRange,iRange,arrows?)
      ++ draws a complex function as a height field.
      ++ It uses the complex norm as the height and the complex 
      ++ argument as the color.
      ++ It will optionally draw arrows on the surface indicating the direction
      ++ of the complex value.
      ++ Sample call:
      ++   \spad{f z == exp(1/z)}
      ++   \spad{drawComplex(f, 0.3..3, 0..2*%pi, false)}
      ++ Parameter descriptions:
      ++   f:  the function to draw
      ++   rRange : the range of the real values
      ++   iRange : the range of imaginary values
      ++   arrows? : a flag indicating whether to draw the phase arrows for f
      ++ Call the functions \axiomFunFrom{setRealSteps}{DrawComplex} and 
      ++ \axiomFunFrom{setImagSteps}{DrawComplex} to change the
      ++ number of steps used in each direction.

    drawComplexVectorField : (C -> C,S,S) -> VIEW3D
      ++ drawComplexVectorField(f,rRange,iRange)
      ++ draws a complex vector field using arrows on the \spad{x--y} plane.
      ++ These vector fields should be viewed from the top by pressing the
      ++ "XY" translate button on the 3-d viewport control panel.
      ++ Sample call:
      ++    \spad{f z == sin z}
      ++    \spad{drawComplexVectorField(f, -2..2, -2..2)}
      ++ Parameter descriptions:
      ++   f : the function to draw
      ++   rRange : the range of the real values
      ++   iRange : the range of the imaginary values
      ++ Call the functions \axiomFunFrom{setRealSteps}{DrawComplex} and 
      ++ \axiomFunFrom{setImagSteps}{DrawComplex} to change the
      ++ number of steps used in each direction.

    setRealSteps: INT -> INT
      ++ setRealSteps(i)
      ++ sets to i the number of steps to use in the real direction 
      ++ when drawing complex functions. Returns i.

    setImagSteps : INT -> INT
      ++ setImagSteps(i)
      ++ sets to i  the number of steps to use in the imaginary direction
      ++ when drawing complex functions. Returns i.

    setClipValue : SF-> SF
      ++ setClipValue(x)
      ++ sets to x the maximum value to plot when drawing complex functions. Returns x.

  CODE ==> add

    -- relative size of the arrow head compared to the length of the arrow
    arrowScale : SF := (0.125)::SF
    arrowAngle: SF := pi()-pi()/(20::SF)    -- angle of the arrow head
    realSteps: INT  := 11     -- the number of steps in the real direction
    imagSteps: INT  := 11     -- the number of steps in the imaginary direction
    clipValue: SF  := 10::SF -- the maximum length of a vector to draw
 
 
    -- Add an arrow head to a line segment, which starts at 'p1', ends at 'p2',
    -- has length 'len', and and angle 'arg'.  We pass 'len' and 'arg' as
    -- arguments since thet were already computed by the calling program
    makeArrow(p1:Point SF, p2:Point SF, len: SF, arg:SF):List List Point SF ==
      c1 := cos(arg + arrowAngle) 
      s1 := sin(arg + arrowAngle)
      c2 := cos(arg - arrowAngle) 
      s2 := sin(arg - arrowAngle)
      p3 := point [p2.1 + c1*arrowScale*len, p2.2 + s1*arrowScale*len, 
                   p2.3, p2.4]
      p4 := point [p2.1 + c2*arrowScale*len, p2.2 + s2*arrowScale*len, 
                   p2.3, p2.4]
      [[p1, p2, p3], [p2, p4]]
     
    -- clip a value in the interval (-clip...clip)
    clipFun(x:SF):SF == 
      min(max(x, -clipValue), clipValue)
 
    drawComplex(f, realRange, imagRange, arrows?) ==
      delReal := (hi(realRange) - lo(realRange))/realSteps::SF
      delImag := (hi(imagRange) - lo(imagRange))/imagSteps::SF
      funTable: ARRAY2(PC) := 
         new((realSteps::NNI)+1, (imagSteps::NNI)+1, [0,0]$PC)
      real := lo(realRange)
      for i in 1..realSteps+1 repeat
        imag := lo(imagRange)
        for j in 1..imagSteps+1 repeat
          z := f complex(real, imag)
          funTable(i,j) := [clipFun(sqrt norm z), argument(z)]$PC
          imag := imag + delImag
        real := real + delReal
      llp := empty()$(List List Point SF)
      real := lo(realRange)
      for i in 1..realSteps+1 repeat
        imag := lo(imagRange)
        lp := empty()$(List Point SF)
        for j in 1..imagSteps+1 repeat
          p := point [real, imag, funTable(i,j).rr, funTable(i,j).th]
          lp := cons(p, lp)
          imag := imag + delImag
        real := real + delReal
        llp := cons(lp, llp)
      space := mesh(llp)$(ThreeSpace SF)
      if arrows? then 
        real := lo(realRange)
        for i in 1..realSteps+1 repeat
          imag := lo(imagRange)
          for j in 1..imagSteps+1 repeat
            arg := funTable(i,j).th
            p1 := point [real,imag, funTable(i,j).rr, arg]
            len := delReal*2.0::SF
            p2 := point [p1.1 + len*cos(arg), p1.2 + len*sin(arg), 
                         p1.3, p1.4]
            arrow := makeArrow(p1, p2, len, arg)
            for a in arrow repeat curve(space, a)$(ThreeSpace SF)
            imag := imag + delImag
          real := real + delReal
      makeViewport3D(space, "Complex Function")$VIEW3D
 
    drawComplexVectorField(f, realRange, imagRange): VIEW3D ==
      -- compute the steps size of the grid
      delReal := (hi(realRange) - lo(realRange))/realSteps::SF
      delImag := (hi(imagRange) - lo(imagRange))/imagSteps::SF
      -- create the space to hold the arrows
      space := create3Space()$(ThreeSpace SF)
      real := lo(realRange)
      for i in 1..realSteps+1 repeat
        imag := lo(imagRange)
        for j in 1..imagSteps+1 repeat
          -- compute the function
          z := f complex(real, imag)
          -- get the direction of the arrow
          arg := argument z
          -- get the length of the arrow
          len := clipFun(sqrt norm z)
          -- create point at the base of the arrow
          p1 :=  point [real, imag, 0::SF, arg]
          -- scale the arrow length so it isn't too long
          scaleLen := delReal * len
          -- create the point at the top of the arrow
          p2 := point [p1.1 + scaleLen*cos(arg), p1.2 + scaleLen*sin(arg), 
                       0::SF, arg]
          -- make the pointer at the top of the arrow
          arrow := makeArrow(p1, p2, scaleLen, arg)
          -- add the line segments in the arrow to the space
          for a in arrow repeat curve(space, a)$(ThreeSpace SF)
          imag := imag + delImag
        real := real + delReal
      -- draw the vector feild
      makeViewport3D(space, "Complex Vector Field")$VIEW3D
 
    -- set the number of steps to use in the real direction
    setRealSteps(n) ==
      realSteps := n
     
    -- set the number of steps to use in the imaginary direction
    setImagSteps(n) ==
      imagSteps := n
     
    -- set the maximum value to plot 
    setClipValue clip ==
      clipValue := clip