/usr/share/axiom-20170501/src/algebra/DTP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | )abbrev package DTP DesingTreePackage
++ Author: Gaetan Hache
++ Date Created: 17 nov 1992
++ Date Last Updated: 31 jan 95
++ Description:
++ The following is all the categories, domains and package
++ used for the desingularisation be means of
++ monoidal transformation (Blowing-up)
DesingTreePackage(K, symb, PolyRing, E, ProjPt, PCS, Plc, DIVISOR,
InfClsPoint, DesTree, BLMET) : SIG == CODE where
K : Field
symb : List(Symbol)
OV ==> OrderedVariableList(symb)
E : DirectProductCategory(#symb,NonNegativeInteger)
PolyRing : PolynomialCategory(K,E,OV)
ProjPt : ProjectiveSpaceCategory(K)
PCS : LocalPowerSeriesCategory(K)
Plc : PlacesCategory(K,PCS)
DIVISOR : DivisorCategory(Plc)
InfClsPoint : InfinitlyClosePointCategory(K,symb,PolyRing,E,ProjPt,
PCS,Plc,DIVISOR,BLMET)
DesTree : DesingTreeCategory(InfClsPoint)
BLMET : BlowUpMethodCategory
bls ==> ['X,'Y]
BlUpRing ==> DistributedMultivariatePolynomial( bls , K)
E2 ==> DirectProduct( #bls , NonNegativeInteger )
AFP ==> AffinePlane(K)
OV2 ==> OrderedVariableList( bls )
PI ==> PositiveInteger
INT ==> Integer
NNI ==> NonNegativeInteger
LPARSPT ==> LocalParametrizationOfSimplePointPackage
PARAMP ==> ParametrizationPackage
PRALGPK ==> ProjectiveAlgebraicSetPackage
PackPoly ==> PackageForPoly(K,PolyRing,E,#symb)
PACKBL ==> PackageForPoly( K , BlUpRing , E2 , #bls )
NP ==> NewtonPolygon(K,BlUpRing,E2,#bls)
PPFC1 ==> PolynomialPackageForCurve(K,PolyRing,E,#symb,ProjPt)
PPFC2 ==> BlowUpPackage(K,symb,PolyRing,E, BLMET)
ParamPackFC ==> LPARSPT(K,symb,PolyRing,E,ProjPt,PCS,Plc)
ParamPack ==> PARAMP(K,symb,PolyRing,E,ProjPt,PCS,Plc)
PrjAlgPack ==> PRALGPK(K,symb,PolyRing,E,ProjPt)
SIG ==> with
blowUp : InfClsPoint -> List InfClsPoint
divisorAtDesingTree : (PolyRing,DesTree) -> DIVISOR
++ divisorAtDesingTree(f,tr) computes the local
++ divisor of f at a desingularisation tree tr of
++ a singular point.
adjunctionDivisor : DesTree -> DIVISOR
++ adjunctionDivisor(tr) compute the local
++ adjunction divisor of a desingularisation tree tr of
++ a singular point.
blowUpWithExcpDiv : DesTree -> Void -- DesTree
desingTreeAtPoint : (ProjPt,PolyRing) -> DesTree
++ desingTreeAtPoint(pt,pol) computes
++ the desingularisation tree at the point pt
++ on the curve defined by pol.
++ This function recursively compute the tree.
desingTree : PolyRing -> List DesTree
++ desingTree(pol) returns all the desingularisation
++ trees of all singular points on the curve
++ defined by pol.
fullParamInit : DesTree -> Void
++ fullParamInit(tr) initialize the local
++ parametrization at all places (leaves of tr),
++ computes the local exceptional divisor
++ at each infinytly close points in the tree.
++ This function is equivalent to the following called:
++ initParLocLeaves(tr)
++ initializeParamOfPlaces(tr)
++ blowUpWithExcpDiv(tr)
initParLocLeaves : DesTree -> Void
++ initParLocLeaves(tr) initialize the local
++ parametrization at simple points corresponding to
++ the leaves of tr.
initializeParamOfPlaces : DesTree -> Void
++ initializeParamOfPlaces(tr) initialize the local
++ parametrization at places corresponding to
++ the leaves of tr.
initializeParamOfPlaces : (DesTree,List PolyRing) -> Void
++ initializeParamOfPlaces(tr,listOfFnc) initialize
++ the local parametrization at places corresponding to
++ the leaves of tr according to the given
++ list of functions in listOfFnc.
genus : PolyRing -> NNI
++ genus(pol) computes the genus of the curve defined by pol.
genusNeg : PolyRing -> INT
++ genusNeg(pol) computes the "genus" of a curve
++ that may be not absolutly irreducible.
++ A "negative" genus means that
++ the curve is reducible !!.
genusTree : (NNI,List(DesTree)) -> NNI
++ genusTree(n,listOfTrees) computes the genus of a curve,
++ where n is the degree of a polynomial pol
++ defining the curve and listOfTrees is all
++ the desingularisation trees at all singular points
++ on the curve defined by pol.
inBetweenExcpDiv : DesTree -> DIVISOR
genusTreeNeg : (NNI,List(DesTree)) -> INT
++ genusTreeNeg(n,listOfTrees) computes the "genus"
++ of a curve that may be not absolutly irreducible,
++ where n is the degree of a polynomial pol
++ defining the curve and listOfTrees is all the
++ desingularisation trees at all singular points
++ on the curve defined by pol.
++ A "negative" genus means that
++ the curve is reducible !!.
CODE ==> add
import PackPoly
import PPFC1
import PPFC2
import PolyRing
import DesTree
divisorAtDesingTreeLocal: (BlUpRing , DesTree ) -> DIVISOR
polyRingToBlUpRing: (PolyRing, BLMET) -> BlUpRing
makeMono: DesTree -> BlUpRing
inBetweenExcpDiv( tr )==
-- trouve le diviseur excp. d'un pt inf voisin PRECEDENT !
-- qV est egal a : 1 + nombre de fois que ce point est repete
-- dans un chaine (le plus un correspond au point d'origine du
-- point dont il est question ici.
-- mp est la multiciplicite du point.
-- cette fonction n'est et ne peut etre qu'utiliser pour
-- calculer le diviseur d'adjonction ( a cause du mp -1).
noeud:= value tr
chart:= chartV noeud
qV:= quotValuation chart
one? qV => 0$DIVISOR
expDiv := divisorAtDesingTreeLocal(makeMono(tr),tr)
mp:= degree expDiv
((qV - 1) * (mp -1)) *$DIVISOR expDiv
polyRingToBlUpRing(pol,chart)==
zero? pol => 0
lc:= leadingCoefficient pol
d:=entries degree pol
ll:= [ d.i for i in 1..3 | ^( i = chartCoord(chart) ) ]
e:= directProduct( vector( ll)$Vector(NNI) )$E2
monomial(lc , e )$BlUpRing + polyRingToBlUpRing( reductum pol, chart )
affToProj(pt:AFP, chart:BLMET ):ProjPt==
nV:= chartCoord chart
d:List(K) := list(pt)$AFP
ll:List K:=
nV = 1 => [ 1$K , d.1 , d.2 ]
nV = 2 => [ d.1 , 01$K , d.2 ]
[d.1 , d.2 , 1 ]
projectivePoint( ll )$ProjPt
biringToPolyRing: (BlUpRing, BLMET) -> PolyRing
biringToPolyRing(pol,chart)==
zero? pol => 0
lc:= leadingCoefficient pol
d:=entries degree pol
nV:= chartCoord chart
ll:List NNI:=
nV = 1 => [ 0$NNI , d.1 , d.2 ]
nV = 2 => [ d.1 , 0$NNI , d.2 ]
[d.1 , d.2 , 0$NNI ]
e:= directProduct( vector( ll)$Vector(NNI) )$E
monomial(lc , e )$PolyRing + biringToPolyRing( reductum pol, chart )
minus : (NNI,NNI) -> NNI
minus(a,b)==
d:=subtractIfCan(a,b)
d case "failed" => error "cannot substract a-b if b>a for NNI"
d
-- returns the exceptional coordinate function
makeExcpDiv: List DesTree -> DIVISOR
desingTreeAtPointLocal: InfClsPoint -> DesTree
subGenus: DesTree -> NNI
lVar:List PolyRing := _
[monomial(1,index(i pretend PI)$OV,1)$PolyRing for i in 1..#symb]
divisorAtDesingTreeLocal(pol,tr)==
-- BLMET has QuadraticTransform ; marche aussi avec
-- Hamburger-Noether mais surement moins efficace
noeud:=value(tr)
pt:=localPointV(noeud)
chart:= chartV noeud
-- ram:= ramifMult chart -- ???
-- new way to compute in order not to translate twice pol
polTrans:BlUpRing:=translate(pol,list(pt)$AFP)$PACKBL
multPol:=degreeOfMinimalForm(polTrans)
chtr:=children(tr)
parPol:PCS
ord:Integer
empty?(chtr) =>
parPol:=parametrize(biringToPolyRing(pol,chartV(noeud))_
,localParamV(noeud))$ParamPack
ord:=order(parPol)$PCS
ord * excpDivV(noeud) -- Note: le div excp est une fois la place.
(multPol *$DIVISOR excpDivV(noeud)) +$DIVISOR _
reduce("+",[divisorAtDesingTreeLocal(_
quadTransform(polTrans,multPol,(chartV(value(child)))),_
child)_
for child in chtr])
desingTreeAtPointLocal(ipt) ==
-- crb:PolyRing,pt:ProjPt,lstnV:List(INT),origPoint:ProjPt,actL:K)==
-- peut etre est-il preferable, avant d'eclater, de tester
-- si le point est simple avec les derives, et non
-- verifier si le point est simple ou non apres translation.
-- ????
blbl:=blowUp ipt
multPt:=multV ipt
one?(multPt) =>
tree( ipt )$DesTree
subTree:List DesTree:= [desingTreeAtPointLocal( iipt ) for iipt in blbl]
tree( ipt, subTree )$DesTree
blowUp(ipt)==
crb:=curveV ipt
pt:= localPointV ipt
lstnV := chartV ipt -- CHH no modif needed
actL:= actualExtensionV ipt
origPoint:= pointV ipt
blbl:=stepBlowUp(crb,pt,lstnV,actL) -- CHH no modif needed
multPt:=blbl.mult
sm:= blbl.subMult
-- la multiplicite et la frontiere du polygone de Newton (ou la forme
-- minimale selon BLMET) du point ipt est assigne par effet de bord !
setmult!(ipt,multPt)
setsubmult!(ipt, sm)
one?(multPt) => empty()
[create(origPoint,_
rec(recTransStr),_
rec(recPoint) ,_
0,_
rec(recChart),_
0,
0$DIVISOR,_
rec(definingExtension),_
new(I)$Symbol )$InfClsPoint for rec in blbl.blUpRec]
makeMono(arb)==
monomial(1,index(excepCoord(chartV(value(arb))) pretend PI)$OV2,_
1)$BlUpRing
makeExcpDiv(lstSsArb)==
reduce("+", _
[divisorAtDesingTreeLocal(makeMono(arb),arb) for arb in lstSsArb],0)
adjunctionDivisorForQuadTrans: DesTree -> DIVISOR
adjunctionDivisorForHamburgeNoether: DesTree -> DIVISOR
adjunctionDivisor( tr )==
BLMET has QuadraticTransform => adjunctionDivisorForQuadTrans( tr )
BLMET has HamburgerNoether => adjunctionDivisorForHamburgeNoether( tr )
error _
" The algorithm to compute the adjunction divisor is not defined for the blowing method you have chosen"
adjunctionDivisorForHamburgeNoether( tr )==
noeud:=value tr
chtr:= children tr
empty?(chtr) => 0$DIVISOR -- on suppose qu'un noeud sans feuille
-- est une feulle, donc non singulier. !
multPt:= multV noeud
( minus(multPt,1) pretend INT) *$DIVISOR excpDivV(noeud) +$DIVISOR _
reduce("+",[inBetweenExcpDiv( arb ) for arb in chtr ]) +$DIVISOR _
reduce("+",[adjunctionDivisorForHamburgeNoether(arb) for arb in chtr])
adjunctionDivisorForQuadTrans(tr)==
noeud:=value(tr)
chtr:=children(tr)
empty?(chtr) => 0$DIVISOR
multPt:=multV(noeud)
( minus(multPt,1) pretend INT) *$DIVISOR excpDivV(noeud) +$DIVISOR _
reduce("+",[adjunctionDivisorForQuadTrans(child) for child in chtr])
divisorAtDesingTree( pol , tr)==
chart:= chartV value(tr)
pp:= polyRingToBlUpRing( pol, chart )
divisorAtDesingTreeLocal( pp, tr )
subGenus(tr)==
noeud:=value tr
mult:=multV(noeud)
chart := chartV noeud
empty?(chdr:=children(tr)) => 0 -- degree(noeud)* mult* minus(mult,1)
degree(noeud)* ( mult*minus( mult, 1 ) + subMultV( noeud ) ) +
reduce("+",[subGenus(ch) for ch in chdr])
initializeParamOfPlaces(tr,lpol)==
noeud:=value(tr)
pt:=localPointV(noeud)
crb:=curveV(noeud)
chart:=chartV(noeud) -- CHH
nV:INT:=chartCoord chart
chtr:List DesTree:=children(tr)
plc:Plc
lParam:List PCS
dd:PositiveInteger:=degree noeud
lcoef:List K
lll:Integer
lParInf:List(PCS)
lpar:List PCS
empty?(chtr) =>
lPar:=localParamOfSimplePt( affToProj(pt, chart) , _
biringToPolyRing(crb, chart),nV)$ParamPackFC
setlocalParam!(noeud,lPar)
lParam:=[parametrize( f , lPar)$ParamPack for f in lpol]
plc:= create( symbNameV(noeud) )$Plc
setParam!(plc,lParam)
setDegree!(plc,dd)
itsALeaf!(plc)
setexcpDiv!(noeud, plc :: DIVISOR )
void()
lpolTrans:List PolyRing:=_
[translateToOrigin( pol, affToProj(pt, chart) , nV) for pol in lpol]
lpolBlUp:List PolyRing
chartBl:BLMET
for arb in chtr repeat
chartBl:=chartV value arb
lpolBlUp:=[applyTransform(pol,chartBl) for pol in lpolTrans]
initializeParamOfPlaces(arb,lpolBlUp)
void()
blowUpWithExcpDiv(tr:DesTree)==
noeud:=value(tr)
pt:=localPointV(noeud)
crb:=curveV(noeud)
chtr:List DesTree:=children(tr)
empty?(chtr) => void() -- tr
for arb in chtr repeat
blowUpWithExcpDiv(arb)
setexcpDiv!(noeud,makeExcpDiv( chtr ))
void()
fullParamInit(tr)==
initializeParamOfPlaces(tr)
blowUpWithExcpDiv(tr)
void()
initializeParamOfPlaces(tr)==initializeParamOfPlaces(tr,lVar)
desingTreeAtPoint(pt,crb)==
ipt:= create(pt,crb)$InfClsPoint
desingTreeAtPointLocal ipt
genus(crb)==
if BLMET has HamburgerNoether then _
print((" BUG BUG corige le bug GH ---- ")::OutputForm)
degCrb:=totalDegree(crb)$PackPoly
genusTree(degCrb,desingTree(crb))
genusNeg(crb)==
degCrb:=totalDegree(crb)$PackPoly
genusTreeNeg(degCrb,desingTree(crb))
desingTree(crb)==
[desingTreeAtPoint(pt,crb) for pt in singularPoints(crb)$PrjAlgPack]
genusTree(degCrb,listArbDes)==
-- le test suivant est necessaire
-- ( meme s'il n'y a pas de point singulier dans ce cas)
-- car avec sousNNI on ne peut retourner un entier negatif
(degCrb <$NNI 3::NNI) and ^empty?(listArbDes) =>
print(("Too many infinitly near points")::OutputForm)
print(("The curve may not be absolutely irreducible")::OutputForm)
error "Have a nice day"
(degCrb <$NNI 3::NNI) => 0
ga:= ( minus(degCrb,1)*minus(degCrb ,2) ) quo$NNI 2
empty?(listArbDes) => ga
--calcul du nombre de double point
dp:= reduce("+",[subGenus(arbD) for arbD in listArbDes]) quo$NNI 2
(dp >$NNI ga) =>
print(("Too many infinitly near points")::OutputForm)
print(("The curve may not be absolutely irreducible")::OutputForm)
error "Have a nice day"
minus(ga,dp)
genusTreeNeg(degCrb,listArbDes)==
-- (degCrb <$NNI 3::NNI) => 0
ga:= (degCrb-1)*(degCrb-2) quo$INT 2
empty?(listArbDes) => ga
ga-( reduce("+",[subGenus(arbD) for arbD in listArbDes]) quo$NNI 2)::INT
|