/usr/share/axiom-20170501/src/algebra/E04AGNT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | )abbrev package E04AGNT e04AgentsPackage
++ Author: Brian Dupee
++ Date Created: February 1996
++ Date Last Updated: June 1996
++ Description:
++ \axiomType{e04AgentsPackage} is a package of numerical agents to be used
++ to investigate attributes of an input function so as to decide the
++ \axiomFun{measure} of an appropriate numerical optimization routine.
e04AgentsPackage() : SIG == CODE where
MDF ==> Matrix DoubleFloat
VEDF ==> Vector Expression DoubleFloat
EDF ==> Expression DoubleFloat
EFI ==> Expression Fraction Integer
PFI ==> Polynomial Fraction Integer
FI ==> Fraction Integer
F ==> Float
DF ==> DoubleFloat
OCDF ==> OrderedCompletion DoubleFloat
LOCDF ==> List OrderedCompletion DoubleFloat
LEDF ==> List Expression DoubleFloat
PDF ==> Polynomial DoubleFloat
LDF ==> List DoubleFloat
INT ==> Integer
NNI ==> NonNegativeInteger
LS ==> List Symbol
EF2 ==> ExpressionFunctions2
NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF)
LSA ==> Record(lfn:LEDF, init:LDF)
SIG ==> with
finiteBound : (LOCDF,DF) -> LDF
++ finiteBound(l,b) repaces all instances of an infinite entry in
++ \axiom{l} by a finite entry \axiom{b} or \axiom{-b}.
sortConstraints : NOA -> NOA
++ sortConstraints(args) uses a simple bubblesort on the list of
++ constraints using the degree of the expression on which to sort.
++ Of course, it must match the bounds to the constraints.
sumOfSquares : EDF -> Union(EDF,"failed")
++ sumOfSquares(f) returns either an expression for which the square is
++ the original function of "failed".
splitLinear : EDF -> EDF
++ splitLinear(f) splits the linear part from an expression which it
++ returns.
simpleBounds? : LEDF -> Boolean
++ simpleBounds?(l) returns true if the list of expressions l are
++ simple.
linear? : LEDF -> Boolean
++ linear?(l) returns true if all the bounds l are either linear or
++ simple.
linear? : EDF -> Boolean
++ linear?(e) tests if \axiom{e} is a linear function.
linearMatrix : (LEDF, NNI) -> MDF
++ linearMatrix(l,n) returns a matrix of coefficients of the linear
++ functions in \axiom{l}. If l is empty, the matrix has at least one
++ row.
linearPart : LEDF -> LEDF
++ linearPart(l) returns the list of linear functions of \axiom{l}.
nonLinearPart : LEDF -> LEDF
++ nonLinearPart(l) returns the list of non-linear functions of l.
quadratic? : EDF -> Boolean
++ quadratic?(e) tests if \axiom{e} is a quadratic function.
variables : LSA -> LS
++ variables(args) returns the list of variables in \axiom{args.lfn}
varList : (EDF,NNI) -> LS
++ varList(e,n) returns a list of \axiom{n} indexed variables with name
++ as in \axiom{e}.
changeNameToObjf : (Symbol,Result) -> Result
++ changeNameToObjf(s,r) changes the name of item \axiom{s} in \axiom{r}
++ to objf.
expenseOfEvaluation : LSA -> F
++ expenseOfEvaluation(o) returns the intensity value of the
++ cost of evaluating the input set of functions. This is in terms
++ of the number of ``operational units''. It returns a value
++ in the range [0,1].
optAttributes : Union(noa:NOA,lsa:LSA) -> List String
++ optAttributes(o) is a function for supplying a list of attributes
++ of an optimization problem.
CODE ==> add
import ExpertSystemToolsPackage, ExpertSystemContinuityPackage
sumOfSquares2:EFI -> Union(EFI,"failed")
nonLinear?:EDF -> Boolean
finiteBound2:(OCDF,DF) -> DF
functionType:EDF -> String
finiteBound2(a:OCDF,b:DF):DF ==
not finite?(a) =>
positive?(a) => b
-b
retract(a)@DF
finiteBound(l:LOCDF,b:DF):LDF == [finiteBound2(i,b) for i in l]
sortConstraints(args:NOA):NOA ==
Args := copy args
c:LEDF := Args.cf
l:LOCDF := Args.lb
u:LOCDF := Args.ub
m:INT := (# c) - 1
n:INT := (# l) - m
for j in m..1 by -1 repeat
for i in 1..j repeat
s:EDF := c.i
t:EDF := c.(i+1)
if linear?(t) and (nonLinear?(s) or quadratic?(s)) then
swap!(c,i,i+1)$LEDF
swap!(l,n+i-1,n+i)$LOCDF
swap!(u,n+i-1,n+i)$LOCDF
Args
changeNameToObjf(s:Symbol,r:Result):Result ==
a := remove!(s,r)$Result
a case Any =>
insert!([objf@Symbol,a],r)$Result
r
r
sum(a:EDF,b:EDF):EDF == a+b
variables(args:LSA): LS == variables(reduce(sum,(args.lfn)))
sumOfSquares(f:EDF):Union(EDF,"failed") ==
e := edf2efi(f)
s:Union(EFI,"failed") := sumOfSquares2(e)
s case EFI =>
map(fi2df,s)$EF2(FI,DF)
"failed"
sumOfSquares2(f:EFI):Union(EFI,"failed") ==
p := retractIfCan(f)@Union(PFI,"failed")
p case PFI =>
r := squareFreePart(p)$PFI
(p=r)@Boolean => "failed"
tp := totalDegree(p)$PFI
tr := totalDegree(r)$PFI
t := tp quo tr
found := false
q := r
for i in 2..t by 2 repeat
s := q**2
(s=p)@Boolean =>
found := true
leave
q := r**i
if found then
q :: EFI
else
"failed"
"failed"
splitLinear(f:EDF):EDF ==
out := 0$EDF
(l := isPlus(f)$EDF) case LEDF =>
for i in l repeat
if not quadratic? i then
out := out + i
out
out
edf2pdf(f:EDF):PDF == (retract(f)@PDF)$EDF
varList(e:EDF,n:NNI):LS ==
s := name(first(variables(edf2pdf(e))$PDF)$LS)$Symbol
[subscript(s,[t::OutputForm]) for t in expand([1..n])$Segment(Integer)]
functionType(f:EDF):String ==
n := #(variables(f))$EDF
p := (retractIfCan(f)@Union(PDF,"failed"))$EDF
p case PDF =>
d := totalDegree(p)$PDF
(n*d) = 1 => "simple"
(d = 1) => "linear"
(d=2)@Boolean => "quadratic"
"non-linear"
"non-linear"
simpleBounds?(l: LEDF):Boolean ==
a := true
for e in l repeat
not (functionType(e) = "simple")@Boolean =>
a := false
leave
a
simple?(e:EDF):Boolean == (functionType(e) = "simple")@Boolean
linear?(e:EDF):Boolean == (functionType(e) = "linear")@Boolean
quadratic?(e:EDF):Boolean == (functionType(e) = "quadratic")@Boolean
nonLinear?(e:EDF):Boolean == (functionType(e) = "non-linear")@Boolean
linear?(l: LEDF):Boolean ==
a := true
for e in l repeat
s := functionType(e)
(s = "quadratic")@Boolean or (s = "non-linear")@Boolean =>
a := false
leave
a
simplePart(l:LEDF):LEDF == [i for i in l | simple?(i)]
linearPart(l:LEDF):LEDF == [i for i in l | linear?(i)]
nonLinearPart(l:LEDF):LEDF ==
[i for i in l | not linear?(i) and not simple?(i)]
linearMatrix(l:LEDF, n:NNI):MDF ==
empty?(l) => mat([],n)
L := linearPart l
M := zero(max(1,# L)$NNI,n)$MDF
vars := varList(first(l)$LEDF,n)
row:INT := 1
for a in L repeat
for j in monomials(edf2pdf(a))$PDF repeat
col:INT := 1
for c in vars repeat
if ((first(variables(j)$PDF)$LS)=c)@Boolean then
M(row,col):= first(coefficients(j)$PDF)$LDF
col := col+1
row := row + 1
M
expenseOfEvaluation(o:LSA):F ==
expenseOfEvaluation(vector(copy o.lfn)$VEDF)
optAttributes(o:Union(noa:NOA,lsa:LSA)):List String ==
o case noa =>
n := o.noa
s1:String := "The object function is " functionType(n.fn)
if empty?(n.lb) then
s2:String := "There are no bounds on the variables"
else
s2:String := "There are simple bounds on the variables"
c := n.cf
if empty?(c) then
s3:String := "There are no constraint functions"
else
t := #(c)
lin := #(linearPart(c))
nonlin := #(nonLinearPart(c))
s3:String := "There are " string(lin)$String " linear and "_
string(nonlin)$String " non-linear constraints"
[s1,s2,s3]
l := o.lsa
s:String := "non-linear"
if linear?(l.lfn) then
s := "linear"
["The object functions are " s]
|