/usr/share/axiom-20170501/src/algebra/EF.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | )abbrev package EF ElementaryFunction
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 10 April 1995
++ Description:
++ Provides elementary functions over an integral domain.
ElementaryFunction(R, F) : SIG == CODE where
R : Join(OrderedSet, IntegralDomain)
F : Join(FunctionSpace R, RadicalCategory)
B ==> Boolean
L ==> List
Z ==> Integer
OP ==> BasicOperator
K ==> Kernel F
INV ==> error "Invalid argument"
SIG ==> with
exp : F -> F
++ exp(x) applies the exponential operator to x
log : F -> F
++ log(x) applies the logarithm operator to x
sin : F -> F
++ sin(x) applies the sine operator to x
cos : F -> F
++ cos(x) applies the cosine operator to x
tan : F -> F
++ tan(x) applies the tangent operator to x
cot : F -> F
++ cot(x) applies the cotangent operator to x
sec : F -> F
++ sec(x) applies the secant operator to x
csc : F -> F
++ csc(x) applies the cosecant operator to x
asin : F -> F
++ asin(x) applies the inverse sine operator to x
acos : F -> F
++ acos(x) applies the inverse cosine operator to x
atan : F -> F
++ atan(x) applies the inverse tangent operator to x
acot : F -> F
++ acot(x) applies the inverse cotangent operator to x
asec : F -> F
++ asec(x) applies the inverse secant operator to x
acsc : F -> F
++ acsc(x) applies the inverse cosecant operator to x
sinh : F -> F
++ sinh(x) applies the hyperbolic sine operator to x
cosh : F -> F
++ cosh(x) applies the hyperbolic cosine operator to x
tanh : F -> F
++ tanh(x) applies the hyperbolic tangent operator to x
coth : F -> F
++ coth(x) applies the hyperbolic cotangent operator to x
sech : F -> F
++ sech(x) applies the hyperbolic secant operator to x
csch : F -> F
++ csch(x) applies the hyperbolic cosecant operator to x
asinh : F -> F
++ asinh(x) applies the inverse hyperbolic sine operator to x
acosh : F -> F
++ acosh(x) applies the inverse hyperbolic cosine operator to x
atanh : F -> F
++ atanh(x) applies the inverse hyperbolic tangent operator to x
acoth : F -> F
++ acoth(x) applies the inverse hyperbolic cotangent operator to x
asech : F -> F
++ asech(x) applies the inverse hyperbolic secant operator to x
acsch : F -> F
++ acsch(x) applies the inverse hyperbolic cosecant operator to x
pi : () -> F
++ pi() returns the pi operator
belong? : OP -> Boolean
++ belong?(p) returns true if operator p is elementary
operator : OP -> OP
++ operator(p) returns an elementary operator with the same symbol as p
-- the following should be local, but are conditional
iisqrt2 : () -> F
++ iisqrt2() should be local but conditional
iisqrt3 : () -> F
++ iisqrt3() should be local but conditional
iiexp : F -> F
++ iiexp(x) should be local but conditional
iilog : F -> F
++ iilog(x) should be local but conditional
iisin : F -> F
++ iisin(x) should be local but conditional
iicos : F -> F
++ iicos(x) should be local but conditional
iitan : F -> F
++ iitan(x) should be local but conditional
iicot : F -> F
++ iicot(x) should be local but conditional
iisec : F -> F
++ iisec(x) should be local but conditional
iicsc : F -> F
++ iicsc(x) should be local but conditional
iiasin : F -> F
++ iiasin(x) should be local but conditional
iiacos : F -> F
++ iiacos(x) should be local but conditional
iiatan : F -> F
++ iiatan(x) should be local but conditional
iiacot : F -> F
++ iiacot(x) should be local but conditional
iiasec : F -> F
++ iiasec(x) should be local but conditional
iiacsc : F -> F
++ iiacsc(x) should be local but conditional
iisinh : F -> F
++ iisinh(x) should be local but conditional
iicosh : F -> F
++ iicosh(x) should be local but conditional
iitanh : F -> F
++ iitanh(x) should be local but conditional
iicoth : F -> F
++ iicoth(x) should be local but conditional
iisech : F -> F
++ iisech(x) should be local but conditional
iicsch : F -> F
++ iicsch(x) should be local but conditional
iiasinh : F -> F
++ iiasinh(x) should be local but conditional
iiacosh : F -> F
++ iiacosh(x) should be local but conditional
iiatanh : F -> F
++ iiatanh(x) should be local but conditional
iiacoth : F -> F
++ iiacoth(x) should be local but conditional
iiasech : F -> F
++ iiasech(x) should be local but conditional
iiacsch : F -> F
++ iiacsch(x) should be local but conditional
specialTrigs : (F, L Record(func:F,pole:B)) -> Union(F, "failed")
++ specialTrigs(x,l) should be local but conditional
localReal? : F -> Boolean
++ localReal?(x) should be local but conditional
CODE ==> add
ipi : List F -> F
iexp : F -> F
ilog : F -> F
iiilog : F -> F
isin : F -> F
icos : F -> F
itan : F -> F
icot : F -> F
isec : F -> F
icsc : F -> F
iasin : F -> F
iacos : F -> F
iatan : F -> F
iacot : F -> F
iasec : F -> F
iacsc : F -> F
isinh : F -> F
icosh : F -> F
itanh : F -> F
icoth : F -> F
isech : F -> F
icsch : F -> F
iasinh : F -> F
iacosh : F -> F
iatanh : F -> F
iacoth : F -> F
iasech : F -> F
iacsch : F -> F
dropfun : F -> F
kernel : F -> K
posrem :(Z, Z) -> Z
iisqrt1 : () -> F
valueOrPole : Record(func:F, pole:B) -> F
oppi := operator("pi"::Symbol)$CommonOperators
oplog := operator("log"::Symbol)$CommonOperators
opexp := operator("exp"::Symbol)$CommonOperators
opsin := operator("sin"::Symbol)$CommonOperators
opcos := operator("cos"::Symbol)$CommonOperators
optan := operator("tan"::Symbol)$CommonOperators
opcot := operator("cot"::Symbol)$CommonOperators
opsec := operator("sec"::Symbol)$CommonOperators
opcsc := operator("csc"::Symbol)$CommonOperators
opasin := operator("asin"::Symbol)$CommonOperators
opacos := operator("acos"::Symbol)$CommonOperators
opatan := operator("atan"::Symbol)$CommonOperators
opacot := operator("acot"::Symbol)$CommonOperators
opasec := operator("asec"::Symbol)$CommonOperators
opacsc := operator("acsc"::Symbol)$CommonOperators
opsinh := operator("sinh"::Symbol)$CommonOperators
opcosh := operator("cosh"::Symbol)$CommonOperators
optanh := operator("tanh"::Symbol)$CommonOperators
opcoth := operator("coth"::Symbol)$CommonOperators
opsech := operator("sech"::Symbol)$CommonOperators
opcsch := operator("csch"::Symbol)$CommonOperators
opasinh := operator("asinh"::Symbol)$CommonOperators
opacosh := operator("acosh"::Symbol)$CommonOperators
opatanh := operator("atanh"::Symbol)$CommonOperators
opacoth := operator("acoth"::Symbol)$CommonOperators
opasech := operator("asech"::Symbol)$CommonOperators
opacsch := operator("acsch"::Symbol)$CommonOperators
-- Pi is a domain...
Pie, isqrt1, isqrt2, isqrt3: F
-- following code is conditionalized on arbitraryPrecesion to recompute in
-- case user changes the precision
if R has TranscendentalFunctionCategory then
Pie := pi()$R :: F
else
Pie := kernel(oppi, nil()$List(F))
if R has TranscendentalFunctionCategory and R has arbitraryPrecision then
pi() == pi()$R :: F
else
pi() == Pie
if R has imaginary: () -> R then
isqrt1 := imaginary()$R :: F
else
isqrt1 := sqrt(-1::F)
if R has RadicalCategory then
isqrt2 := sqrt(2::R)::F
isqrt3 := sqrt(3::R)::F
else
isqrt2 := sqrt(2::F)
isqrt3 := sqrt(3::F)
iisqrt1() == isqrt1
if R has RadicalCategory and R has arbitraryPrecision then
iisqrt2() == sqrt(2::R)::F
iisqrt3() == sqrt(3::R)::F
else
iisqrt2() == isqrt2
iisqrt3() == isqrt3
ipi l == pi()
log x == oplog x
exp x == opexp x
sin x == opsin x
cos x == opcos x
tan x == optan x
cot x == opcot x
sec x == opsec x
csc x == opcsc x
asin x == opasin x
acos x == opacos x
atan x == opatan x
acot x == opacot x
asec x == opasec x
acsc x == opacsc x
sinh x == opsinh x
cosh x == opcosh x
tanh x == optanh x
coth x == opcoth x
sech x == opsech x
csch x == opcsch x
asinh x == opasinh x
acosh x == opacosh x
atanh x == opatanh x
acoth x == opacoth x
asech x == opasech x
acsch x == opacsch x
kernel x == retract(x)@K
posrem(n, m) == ((r := n rem m) < 0 => r + m; r)
valueOrPole rec == (rec.pole => INV; rec.func)
belong? op == has?(op, "elem")
operator op ==
is?(op, "pi"::Symbol) => oppi
is?(op, "log"::Symbol) => oplog
is?(op, "exp"::Symbol) => opexp
is?(op, "sin"::Symbol) => opsin
is?(op, "cos"::Symbol) => opcos
is?(op, "tan"::Symbol) => optan
is?(op, "cot"::Symbol) => opcot
is?(op, "sec"::Symbol) => opsec
is?(op, "csc"::Symbol) => opcsc
is?(op, "asin"::Symbol) => opasin
is?(op, "acos"::Symbol) => opacos
is?(op, "atan"::Symbol) => opatan
is?(op, "acot"::Symbol) => opacot
is?(op, "asec"::Symbol) => opasec
is?(op, "acsc"::Symbol) => opacsc
is?(op, "sinh"::Symbol) => opsinh
is?(op, "cosh"::Symbol) => opcosh
is?(op, "tanh"::Symbol) => optanh
is?(op, "coth"::Symbol) => opcoth
is?(op, "sech"::Symbol) => opsech
is?(op, "csch"::Symbol) => opcsch
is?(op, "asinh"::Symbol) => opasinh
is?(op, "acosh"::Symbol) => opacosh
is?(op, "atanh"::Symbol) => opatanh
is?(op, "acoth"::Symbol) => opacoth
is?(op, "asech"::Symbol) => opasech
is?(op, "acsch"::Symbol) => opacsch
error "Not an elementary operator"
dropfun x ==
((k := retractIfCan(x)@Union(K, "failed")) case "failed") or
empty?(argument(k::K)) => 0
first argument(k::K)
if R has RetractableTo Z then
specialTrigs(x, values) ==
(r := retractIfCan(y := x/pi())@Union(Fraction Z, "failed"))
case "failed" => "failed"
q := r::Fraction(Integer)
m := minIndex values
(n := retractIfCan(q)@Union(Z, "failed")) case Z =>
even?(n::Z) => valueOrPole(values.m)
valueOrPole(values.(m+1))
(n := retractIfCan(2*q)@Union(Z, "failed")) case Z =>
(s := posrem(n::Z, 4)) = 1 => valueOrPole(values.(m+2))
valueOrPole(values.(m+3))
(n := retractIfCan(3*q)@Union(Z, "failed")) case Z =>
(s := posrem(n::Z, 6)) = 1 => valueOrPole(values.(m+4))
s = 2 => valueOrPole(values.(m+5))
s = 4 => valueOrPole(values.(m+6))
valueOrPole(values.(m+7))
(n := retractIfCan(4*q)@Union(Z, "failed")) case Z =>
(s := posrem(n::Z, 8)) = 1 => valueOrPole(values.(m+8))
s = 3 => valueOrPole(values.(m+9))
s = 5 => valueOrPole(values.(m+10))
valueOrPole(values.(m+11))
(n := retractIfCan(6*q)@Union(Z, "failed")) case Z =>
(s := posrem(n::Z, 12)) = 1 => valueOrPole(values.(m+12))
s = 5 => valueOrPole(values.(m+13))
s = 7 => valueOrPole(values.(m+14))
valueOrPole(values.(m+15))
"failed"
else
specialTrigs(x, values) == "failed"
isin x ==
zero? x => 0
y := dropfun x
is?(x, opasin) => y
is?(x, opacos) => sqrt(1 - y**2)
is?(x, opatan) => y / sqrt(1 + y**2)
is?(x, opacot) => inv sqrt(1 + y**2)
is?(x, opasec) => sqrt(y**2 - 1) / y
is?(x, opacsc) => inv y
h := inv(2::F)
s2 := h * iisqrt2()
s3 := h * iisqrt3()
u := specialTrigs(x, [[0,false], [0,false], [1,false], [-1,false],
[s3,false], [s3,false], [-s3,false], [-s3,false],
[s2,false], [s2,false], [-s2,false], [-s2,false],
[h,false], [h,false], [-h,false], [-h,false]])
u case F => u :: F
kernel(opsin, x)
icos x ==
zero? x => 1
y := dropfun x
is?(x, opasin) => sqrt(1 - y**2)
is?(x, opacos) => y
is?(x, opatan) => inv sqrt(1 + y**2)
is?(x, opacot) => y / sqrt(1 + y**2)
is?(x, opasec) => inv y
is?(x, opacsc) => sqrt(y**2 - 1) / y
h := inv(2::F)
s2 := h * iisqrt2()
s3 := h * iisqrt3()
u := specialTrigs(x, [[1,false],[-1,false], [0,false], [0,false],
[h,false],[-h,false],[-h,false],[h,false],
[s2,false],[-s2,false],[-s2,false],[s2,false],
[s3,false], [-s3,false],[-s3,false],[s3,false]])
u case F => u :: F
kernel(opcos, x)
itan x ==
zero? x => 0
y := dropfun x
is?(x, opasin) => y / sqrt(1 - y**2)
is?(x, opacos) => sqrt(1 - y**2) / y
is?(x, opatan) => y
is?(x, opacot) => inv y
is?(x, opasec) => sqrt(y**2 - 1)
is?(x, opacsc) => inv sqrt(y**2 - 1)
s33 := (s3 := iisqrt3()) / (3::F)
u := specialTrigs(x, [[0,false], [0,false], [0,true], [0,true],
[s3,false], [-s3,false], [s3,false], [-s3,false],
[1,false], [-1,false], [1,false], [-1,false],
[s33,false], [-s33, false],[s33,false], [-s33, false]])
u case F => u :: F
kernel(optan, x)
icot x ==
zero? x => INV
y := dropfun x
is?(x, opasin) => sqrt(1 - y**2) / y
is?(x, opacos) => y / sqrt(1 - y**2)
is?(x, opatan) => inv y
is?(x, opacot) => y
is?(x, opasec) => inv sqrt(y**2 - 1)
is?(x, opacsc) => sqrt(y**2 - 1)
s33 := (s3 := iisqrt3()) / (3::F)
u := specialTrigs(x, [[0,true], [0,true], [0,false], [0,false],
[s33,false], [-s33,false], [s33,false], [-s33,false],
[1,false], [-1,false], [1,false], [-1,false],
[s3,false], [-s3, false], [s3,false], [-s3, false]])
u case F => u :: F
kernel(opcot, x)
isec x ==
zero? x => 1
y := dropfun x
is?(x, opasin) => inv sqrt(1 - y**2)
is?(x, opacos) => inv y
is?(x, opatan) => sqrt(1 + y**2)
is?(x, opacot) => sqrt(1 + y**2) / y
is?(x, opasec) => y
is?(x, opacsc) => y / sqrt(y**2 - 1)
s2 := iisqrt2()
s3 := 2 * iisqrt3() / (3::F)
h := 2::F
u := specialTrigs(x, [[1,false],[-1,false],[0,true],[0,true],
[h,false], [-h,false], [-h,false], [h,false],
[s2,false], [-s2,false], [-s2,false], [s2,false],
[s3,false], [-s3,false], [-s3,false], [s3,false]])
u case F => u :: F
kernel(opsec, x)
icsc x ==
zero? x => INV
y := dropfun x
is?(x, opasin) => inv y
is?(x, opacos) => inv sqrt(1 - y**2)
is?(x, opatan) => sqrt(1 + y**2) / y
is?(x, opacot) => sqrt(1 + y**2)
is?(x, opasec) => y / sqrt(y**2 - 1)
is?(x, opacsc) => y
s2 := iisqrt2()
s3 := 2 * iisqrt3() / (3::F)
h := 2::F
u := specialTrigs(x, [[0,true], [0,true], [1,false], [-1,false],
[s3,false], [s3,false], [-s3,false], [-s3,false],
[s2,false], [s2,false], [-s2,false], [-s2,false],
[h,false], [h,false], [-h,false], [-h,false]])
u case F => u :: F
kernel(opcsc, x)
iasin x ==
zero? x => 0
(x = 1) => pi() / (2::F)
x = -1 => - pi() / (2::F)
y := dropfun x
is?(x, opsin) => y
is?(x, opcos) => pi() / (2::F) - y
kernel(opasin, x)
iacos x ==
zero? x => pi() / (2::F)
(x = 1) => 0
x = -1 => pi()
y := dropfun x
is?(x, opsin) => pi() / (2::F) - y
is?(x, opcos) => y
kernel(opacos, x)
iatan x ==
zero? x => 0
(x = 1) => pi() / (4::F)
x = -1 => - pi() / (4::F)
x = (r3:=iisqrt3()) => pi() / (3::F)
(x*r3) = 1 => pi() / (6::F)
y := dropfun x
is?(x, optan) => y
is?(x, opcot) => pi() / (2::F) - y
kernel(opatan, x)
iacot x ==
zero? x => pi() / (2::F)
(x = 1) => pi() / (4::F)
x = -1 => 3 * pi() / (4::F)
x = (r3:=iisqrt3()) => pi() / (6::F)
x = -r3 => 5 * pi() / (6::F)
(xx:=x*r3) = 1 => pi() / (3::F)
xx = -1 => 2* pi() / (3::F)
y := dropfun x
is?(x, optan) => pi() / (2::F) - y
is?(x, opcot) => y
kernel(opacot, x)
iasec x ==
zero? x => INV
(x = 1) => 0
x = -1 => pi()
y := dropfun x
is?(x, opsec) => y
is?(x, opcsc) => pi() / (2::F) - y
kernel(opasec, x)
iacsc x ==
zero? x => INV
(x = 1) => pi() / (2::F)
x = -1 => - pi() / (2::F)
y := dropfun x
is?(x, opsec) => pi() / (2::F) - y
is?(x, opcsc) => y
kernel(opacsc, x)
isinh x ==
zero? x => 0
y := dropfun x
is?(x, opasinh) => y
is?(x, opacosh) => sqrt(y**2 - 1)
is?(x, opatanh) => y / sqrt(1 - y**2)
is?(x, opacoth) => - inv sqrt(y**2 - 1)
is?(x, opasech) => sqrt(1 - y**2) / y
is?(x, opacsch) => inv y
kernel(opsinh, x)
icosh x ==
zero? x => 1
y := dropfun x
is?(x, opasinh) => sqrt(y**2 + 1)
is?(x, opacosh) => y
is?(x, opatanh) => inv sqrt(1 - y**2)
is?(x, opacoth) => y / sqrt(y**2 - 1)
is?(x, opasech) => inv y
is?(x, opacsch) => sqrt(y**2 + 1) / y
kernel(opcosh, x)
itanh x ==
zero? x => 0
y := dropfun x
is?(x, opasinh) => y / sqrt(y**2 + 1)
is?(x, opacosh) => sqrt(y**2 - 1) / y
is?(x, opatanh) => y
is?(x, opacoth) => inv y
is?(x, opasech) => sqrt(1 - y**2)
is?(x, opacsch) => inv sqrt(y**2 + 1)
kernel(optanh, x)
icoth x ==
zero? x => INV
y := dropfun x
is?(x, opasinh) => sqrt(y**2 + 1) / y
is?(x, opacosh) => y / sqrt(y**2 - 1)
is?(x, opatanh) => inv y
is?(x, opacoth) => y
is?(x, opasech) => inv sqrt(1 - y**2)
is?(x, opacsch) => sqrt(y**2 + 1)
kernel(opcoth, x)
isech x ==
zero? x => 1
y := dropfun x
is?(x, opasinh) => inv sqrt(y**2 + 1)
is?(x, opacosh) => inv y
is?(x, opatanh) => sqrt(1 - y**2)
is?(x, opacoth) => sqrt(y**2 - 1) / y
is?(x, opasech) => y
is?(x, opacsch) => y / sqrt(y**2 + 1)
kernel(opsech, x)
icsch x ==
zero? x => INV
y := dropfun x
is?(x, opasinh) => inv y
is?(x, opacosh) => inv sqrt(y**2 - 1)
is?(x, opatanh) => sqrt(1 - y**2) / y
is?(x, opacoth) => - sqrt(y**2 - 1)
is?(x, opasech) => y / sqrt(1 - y**2)
is?(x, opacsch) => y
kernel(opcsch, x)
iasinh x ==
is?(x, opsinh) => first argument kernel x
kernel(opasinh, x)
iacosh x ==
is?(x, opcosh) => first argument kernel x
kernel(opacosh, x)
iatanh x ==
is?(x, optanh) => first argument kernel x
kernel(opatanh, x)
iacoth x ==
is?(x, opcoth) => first argument kernel x
kernel(opacoth, x)
iasech x ==
is?(x, opsech) => first argument kernel x
kernel(opasech, x)
iacsch x ==
is?(x, opcsch) => first argument kernel x
kernel(opacsch, x)
iexp x ==
zero? x => 1
is?(x, oplog) => first argument kernel x
x < 0 and empty? variables x => inv iexp(-x)
h := inv(2::F)
i := iisqrt1()
s2 := h * iisqrt2()
s3 := h * iisqrt3()
u := specialTrigs(x / i, [[1,false],[-1,false], [i,false], [-i,false],
[h + i * s3,false], [-h + i * s3, false], [-h - i * s3, false],
[h - i * s3, false], [s2 + i * s2, false], [-s2 + i * s2, false],
[-s2 - i * s2, false], [s2 - i * s2, false], [s3 + i * h, false],
[-s3 + i * h, false], [-s3 - i * h, false],[s3 - i * h, false]])
u case F => u :: F
kernel(opexp, x)
-- THIS DETERMINES WHEN TO PERFORM THE log exp f -> f SIMPLIFICATION
-- CURRENT BEHAVIOR:
-- IF R IS COMPLEX(S) THEN ONLY ELEMENTS WHICH ARE RETRACTABLE TO R
-- AND EQUAL TO THEIR CONJUGATES ARE DEEMED REAL (OVERRESTRICTIVE FOR NOW)
-- OTHERWISE (for example R = INT OR FRAC INT),
-- ALL THE ELEMENTS ARE DEEMED REAL
if (R has imaginary:() -> R) and (R has conjugate: R -> R) then
localReal? x ==
(u := retractIfCan(x)@Union(R, "failed")) case R
and (u::R) = conjugate(u::R)
else
localReal? x == true
iiilog x ==
zero? x => INV
(x = 1) => 0
(u := isExpt(x, opexp)) case Record(var:K, exponent:Integer) =>
rec := u::Record(var:K, exponent:Integer)
arg := first argument(rec.var);
localReal? arg => rec.exponent * first argument(rec.var);
ilog x
ilog x
ilog x ==
((num1 := ((num := numer x) = 1)) or num = -1) and (den := denom x) ^= 1
and empty? variables x => - kernel(oplog, (num1 => den; -den)::F)
kernel(oplog, x)
if R has ElementaryFunctionCategory then
iilog x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iiilog x
log(r::R)::F
iiexp x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iexp x
exp(r::R)::F
else
iilog x == iiilog x
iiexp x == iexp x
if R has TrigonometricFunctionCategory then
iisin x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isin x
sin(r::R)::F
iicos x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icos x
cos(r::R)::F
iitan x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => itan x
tan(r::R)::F
iicot x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icot x
cot(r::R)::F
iisec x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isec x
sec(r::R)::F
iicsc x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icsc x
csc(r::R)::F
else
iisin x == isin x
iicos x == icos x
iitan x == itan x
iicot x == icot x
iisec x == isec x
iicsc x == icsc x
if R has ArcTrigonometricFunctionCategory then
iiasin x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasin x
asin(r::R)::F
iiacos x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacos x
acos(r::R)::F
iiatan x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iatan x
atan(r::R)::F
iiacot x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacot x
acot(r::R)::F
iiasec x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasec x
asec(r::R)::F
iiacsc x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacsc x
acsc(r::R)::F
else
iiasin x == iasin x
iiacos x == iacos x
iiatan x == iatan x
iiacot x == iacot x
iiasec x == iasec x
iiacsc x == iacsc x
if R has HyperbolicFunctionCategory then
iisinh x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isinh x
sinh(r::R)::F
iicosh x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icosh x
cosh(r::R)::F
iitanh x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => itanh x
tanh(r::R)::F
iicoth x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icoth x
coth(r::R)::F
iisech x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isech x
sech(r::R)::F
iicsch x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icsch x
csch(r::R)::F
else
iisinh x == isinh x
iicosh x == icosh x
iitanh x == itanh x
iicoth x == icoth x
iisech x == isech x
iicsch x == icsch x
if R has ArcHyperbolicFunctionCategory then
iiasinh x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasinh x
asinh(r::R)::F
iiacosh x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacosh x
acosh(r::R)::F
iiatanh x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iatanh x
atanh(r::R)::F
iiacoth x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacoth x
acoth(r::R)::F
iiasech x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasech x
asech(r::R)::F
iiacsch x ==
(r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacsch x
acsch(r::R)::F
else
iiasinh x == iasinh x
iiacosh x == iacosh x
iiatanh x == iatanh x
iiacoth x == iacoth x
iiasech x == iasech x
iiacsch x == iacsch x
import BasicOperatorFunctions1(F)
evaluate(oppi, ipi)
evaluate(oplog, iilog)
evaluate(opexp, iiexp)
evaluate(opsin, iisin)
evaluate(opcos, iicos)
evaluate(optan, iitan)
evaluate(opcot, iicot)
evaluate(opsec, iisec)
evaluate(opcsc, iicsc)
evaluate(opasin, iiasin)
evaluate(opacos, iiacos)
evaluate(opatan, iiatan)
evaluate(opacot, iiacot)
evaluate(opasec, iiasec)
evaluate(opacsc, iiacsc)
evaluate(opsinh, iisinh)
evaluate(opcosh, iicosh)
evaluate(optanh, iitanh)
evaluate(opcoth, iicoth)
evaluate(opsech, iisech)
evaluate(opcsch, iicsch)
evaluate(opasinh, iiasinh)
evaluate(opacosh, iiacosh)
evaluate(opatanh, iiatanh)
evaluate(opacoth, iiacoth)
evaluate(opasech, iiasech)
evaluate(opacsch, iiacsch)
derivative(opexp, exp)
derivative(oplog, inv)
derivative(opsin, cos)
derivative(opcos,(x:F):F +-> - sin x)
derivative(optan,(x:F):F +-> 1 + tan(x)**2)
derivative(opcot,(x:F):F +-> - 1 - cot(x)**2)
derivative(opsec,(x:F):F +-> tan(x) * sec(x))
derivative(opcsc,(x:F):F +-> - cot(x) * csc(x))
derivative(opasin,(x:F):F +-> inv sqrt(1 - x**2))
derivative(opacos,(x:F):F +-> - inv sqrt(1 - x**2))
derivative(opatan,(x:F):F +-> inv(1 + x**2))
derivative(opacot,(x:F):F +-> - inv(1 + x**2))
derivative(opasec,(x:F):F +-> inv(x * sqrt(x**2 - 1)))
derivative(opacsc,(x:F):F +-> - inv(x * sqrt(x**2 - 1)))
derivative(opsinh, cosh)
derivative(opcosh, sinh)
derivative(optanh,(x:F):F +-> 1 - tanh(x)**2)
derivative(opcoth,(x:F):F +-> 1 - coth(x)**2)
derivative(opsech,(x:F):F +-> - tanh(x) * sech(x))
derivative(opcsch,(x:F):F +-> - coth(x) * csch(x))
derivative(opasinh,(x:F):F +-> inv sqrt(1 + x**2))
derivative(opacosh,(x:F):F +-> inv sqrt(x**2 - 1))
derivative(opatanh,(x:F):F +-> inv(1 - x**2))
derivative(opacoth,(x:F):F +-> inv(1 - x**2))
derivative(opasech,(x:F):F +-> - inv(x * sqrt(1 - x**2)))
derivative(opacsch,(x:F):F +-> - inv(x * sqrt(1 + x**2)))
|