This file is indexed.

/usr/share/axiom-20170501/src/algebra/EFULS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
)abbrev domain EFULS ElementaryFunctionsUnivariateLaurentSeries
++ Author: Clifton J. Williamson
++ Date Created: 6 February 1990
++ Date Last Updated: 25 February 1990
++ Description:
++ This domain provides elementary functions on any Laurent series
++ domain over a field which was constructed from a Taylor series
++ domain.  These functions are implemented by calling the
++ corresponding functions on the Taylor series domain.  We also
++ provide 'partial functions' which compute transcendental
++ functions of Laurent series when possible and return "failed"
++ when this is not possible.

ElementaryFunctionsUnivariateLaurentSeries(Coef,UTS,ULS) : SIG == CODE where
  Coef : Algebra Fraction Integer
  UTS : UnivariateTaylorSeriesCategory Coef
  ULS : UnivariateLaurentSeriesConstructorCategory(Coef,UTS)

  I    ==> Integer
  NNI  ==> NonNegativeInteger
  RN   ==> Fraction Integer
  S    ==> String
  STTF ==> StreamTranscendentalFunctions(Coef)
 
  SIG ==> PartialTranscendentalFunctions(ULS) with
 
    if Coef has Field then

      "**" : (ULS,RN) -> ULS
        ++ s ** r raises a Laurent series s to a rational power r
 
    --% Exponentials and Logarithms
 
    exp : ULS -> ULS
      ++ exp(z) returns the exponential of Laurent series z.

    log : ULS -> ULS
      ++ log(z) returns the logarithm of Laurent series z.
 
    --% TrigonometricFunctionCategory
 
    sin : ULS -> ULS
      ++ sin(z) returns the sine of Laurent series z.

    cos : ULS -> ULS
      ++ cos(z) returns the cosine of Laurent series z.

    tan : ULS -> ULS
      ++ tan(z) returns the tangent of Laurent series z.

    cot : ULS -> ULS
      ++ cot(z) returns the cotangent of Laurent series z.

    sec : ULS -> ULS
      ++ sec(z) returns the secant of Laurent series z.

    csc : ULS -> ULS
      ++ csc(z) returns the cosecant of Laurent series z.
 
    --% ArcTrigonometricFunctionCategory
 
    asin : ULS -> ULS
      ++ asin(z) returns the arc-sine of Laurent series z.

    acos : ULS -> ULS
      ++ acos(z) returns the arc-cosine of Laurent series z.

    atan : ULS -> ULS
      ++ atan(z) returns the arc-tangent of Laurent series z.

    acot : ULS -> ULS
      ++ acot(z) returns the arc-cotangent of Laurent series z.

    asec : ULS -> ULS
      ++ asec(z) returns the arc-secant of Laurent series z.

    acsc : ULS -> ULS
      ++ acsc(z) returns the arc-cosecant of Laurent series z.
 
    --% HyperbolicFunctionCategory
 
    sinh : ULS -> ULS
      ++ sinh(z) returns the hyperbolic sine of Laurent series z.

    cosh : ULS -> ULS
      ++ cosh(z) returns the hyperbolic cosine of Laurent series z.

    tanh : ULS -> ULS
      ++ tanh(z) returns the hyperbolic tangent of Laurent series z.

    coth : ULS -> ULS
      ++ coth(z) returns the hyperbolic cotangent of Laurent series z.

    sech : ULS -> ULS
      ++ sech(z) returns the hyperbolic secant of Laurent series z.

    csch : ULS -> ULS
      ++ csch(z) returns the hyperbolic cosecant of Laurent series z.
 
    --% ArcHyperbolicFunctionCategory
 
    asinh : ULS -> ULS
      ++ asinh(z) returns the inverse hyperbolic sine of Laurent series z.

    acosh : ULS -> ULS
      ++ acosh(z) returns the inverse hyperbolic cosine of Laurent series z.

    atanh : ULS -> ULS
      ++ atanh(z) returns the inverse hyperbolic tangent of Laurent series z.

    acoth : ULS -> ULS
      ++ acoth(z) returns the inverse hyperbolic cotangent of Laurent series z.

    asech : ULS -> ULS
      ++ asech(z) returns the inverse hyperbolic secant of Laurent series z.

    acsch : ULS -> ULS
      ++ acsch(z) returns the inverse hyperbolic cosecant of Laurent series z.
 
  CODE ==> add
 
    --% roots
 
    RATPOWERS : Boolean := Coef has "**":(Coef,RN) -> Coef
    TRANSFCN  : Boolean := Coef has TranscendentalFunctionCategory
    RATS      : Boolean := Coef has retractIfCan: Coef -> Union(RN,"failed")
 
    nthRootUTS:(UTS,I) -> Union(UTS,"failed")
    nthRootUTS(uts,n) ==
      -- assumed: n > 1, uts has non-zero constant term
      coefficient(uts,0) = 1 => uts ** inv(n::RN)
      RATPOWERS => uts ** inv(n::RN)
      "failed"
 
    nthRootIfCan(uls,nn) ==
      (n := nn :: I) < 1 => error "nthRootIfCan: n must be positive"
      n = 1 => uls
      deg := degree uls
      if zero? (coef := coefficient(uls,deg)) then
        uls := removeZeroes(1000,uls); deg := degree uls
        zero? (coef := coefficient(uls,deg)) =>
          error "root of series with many leading zero coefficients"
      (k := deg exquo n) case "failed" => "failed"
      uts := taylor(uls * monomial(1,-deg))
      (root := nthRootUTS(uts,n)) case "failed" => "failed"
      monomial(1,k :: I) * (root :: UTS :: ULS)
 
    if Coef has Field then
       (uls:ULS) ** (r:RN) ==
         num := numer r; den := denom r
         den = 1 => uls ** num
         deg := degree uls
         if zero? (coef := coefficient(uls,deg)) then
           uls := removeZeroes(1000,uls); deg := degree uls
           zero? (coef := coefficient(uls,deg)) =>
             error "power of series with many leading zero coefficients"
         (k := deg exquo den) case "failed" =>
           error "**: rational power does not exist"
         uts := taylor(uls * monomial(1,-deg)) ** r
         monomial(1,(k :: I) * num) * (uts :: ULS)
 
    --% transcendental functions
 
    applyIfCan: (UTS -> UTS,ULS) -> Union(ULS,"failed")
    applyIfCan(fcn,uls) ==
      uts := taylorIfCan uls
      uts case "failed" => "failed"
      fcn(uts :: UTS) :: ULS
 
    expIfCan   uls == applyIfCan(exp,uls)

    sinIfCan   uls == applyIfCan(sin,uls)

    cosIfCan   uls == applyIfCan(cos,uls)

    asinIfCan  uls == applyIfCan(asin,uls)

    acosIfCan  uls == applyIfCan(acos,uls)

    asecIfCan  uls == applyIfCan(asec,uls)

    acscIfCan  uls == applyIfCan(acsc,uls)

    sinhIfCan  uls == applyIfCan(sinh,uls)

    coshIfCan  uls == applyIfCan(cosh,uls)

    asinhIfCan uls == applyIfCan(asinh,uls)

    acoshIfCan uls == applyIfCan(acosh,uls)

    atanhIfCan uls == applyIfCan(atanh,uls)

    acothIfCan uls == applyIfCan(acoth,uls)

    asechIfCan uls == applyIfCan(asech,uls)

    acschIfCan uls == applyIfCan(acsch,uls)
 
    logIfCan uls ==
      uts := taylorIfCan uls
      uts case "failed" => "failed"
      zero? coefficient(ts := uts :: UTS,0) => "failed"
      log(ts) :: ULS
 
    tanIfCan uls ==
      -- don't call 'tan' on a UTS (tan(uls) may have a singularity)
      uts := taylorIfCan uls
      uts case "failed" => "failed"
      sc := sincos(coefficients(uts :: UTS))$STTF
      (cosInv := recip(series(sc.cos) :: ULS)) case "failed" => "failed"
      (series(sc.sin) :: ULS) * (cosInv :: ULS)
 
    cotIfCan uls ==
      -- don't call 'cot' on a UTS (cot(uls) may have a singularity)
      uts := taylorIfCan uls
      uts case "failed" => "failed"
      sc := sincos(coefficients(uts :: UTS))$STTF
      (sinInv := recip(series(sc.sin) :: ULS)) case "failed" => "failed"
      (series(sc.cos) :: ULS) * (sinInv :: ULS)
 
    secIfCan uls ==
      cos := cosIfCan uls
      cos case "failed" => "failed"
      (cosInv := recip(cos :: ULS)) case "failed" => "failed"
      cosInv :: ULS
 
    cscIfCan uls ==
      sin := sinIfCan uls
      sin case "failed" => "failed"
      (sinInv := recip(sin :: ULS)) case "failed" => "failed"
      sinInv :: ULS

    atanIfCan uls ==
      coef := coefficient(uls,0)
      (ord := order(uls,0)) = 0 and coef * coef = -1 => "failed"
      cc : Coef := 
        ord < 0 =>
          TRANSFCN =>
            RATS =>
              lc := coefficient(uls,ord)
              (rat := retractIfCan(lc)@Union(RN,"failed")) case "failed" =>
                (1/2) * pi()
              (rat :: RN) > 0 => (1/2) * pi()
              (-1/2) * pi()
            (1/2) * pi()
          return "failed"
        coef = 0 => 0
        TRANSFCN => atan coef
        return "failed"
      (z := recip(1 + uls*uls)) case "failed" => "failed"
      (cc :: ULS) + integrate(differentiate(uls) * (z :: ULS))

    acotIfCan uls ==
      coef := coefficient(uls,0)
      (ord := order(uls,0)) = 0 and coef * coef = -1 => "failed"
      cc : Coef := 
        ord < 0 =>
          RATS =>
            lc := coefficient(uls,ord)
            (rat := retractIfCan(lc)@Union(RN,"failed")) case "failed" => 0
            (rat :: RN) > 0 => 0
            TRANSFCN => pi()
            return "failed"
          0
        TRANSFCN => acot coef
        return "failed"
      (z := recip(1 + uls*uls)) case "failed" => "failed"
      (cc :: ULS) - integrate(differentiate(uls) * (z :: ULS))
 
    tanhIfCan uls ==
      -- don't call 'tanh' on a UTS (tanh(uls) may have a singularity)
      uts := taylorIfCan uls
      uts case "failed" => "failed"
      sc := sinhcosh(coefficients(uts :: UTS))$STTF
      (coshInv := recip(series(sc.cosh) :: ULS)) case "failed" =>
        "failed"
      (series(sc.sinh) :: ULS) * (coshInv :: ULS)
 
    cothIfCan uls ==
      -- don't call 'coth' on a UTS (coth(uls) may have a singularity)
      uts := taylorIfCan uls
      uts case "failed" => "failed"
      sc := sinhcosh(coefficients(uts :: UTS))$STTF
      (sinhInv := recip(series(sc.sinh) :: ULS)) case "failed" =>
        "failed"
      (series(sc.cosh) :: ULS) * (sinhInv :: ULS)
 
    sechIfCan uls ==
      cosh := coshIfCan uls
      cosh case "failed" => "failed"
      (coshInv := recip(cosh :: ULS)) case "failed" => "failed"
      coshInv :: ULS
 
    cschIfCan uls ==
      sinh := sinhIfCan uls
      sinh case "failed" => "failed"
      (sinhInv := recip(sinh :: ULS)) case "failed" => "failed"
      sinhInv :: ULS
 
    applyOrError:(ULS -> Union(ULS,"failed"),S,ULS) -> ULS
    applyOrError(fcn,name,uls) ==
      ans := fcn uls
      ans case "failed" =>
        error concat(name," of function with singularity")
      ans :: ULS
 
    exp uls   == applyOrError(expIfCan,"exp",uls)

    log uls   == applyOrError(logIfCan,"log",uls)

    sin uls   == applyOrError(sinIfCan,"sin",uls)

    cos uls   == applyOrError(cosIfCan,"cos",uls)

    tan uls   == applyOrError(tanIfCan,"tan",uls)

    cot uls   == applyOrError(cotIfCan,"cot",uls)

    sec uls   == applyOrError(secIfCan,"sec",uls)

    csc uls   == applyOrError(cscIfCan,"csc",uls)

    asin uls  == applyOrError(asinIfCan,"asin",uls)

    acos uls  == applyOrError(acosIfCan,"acos",uls)

    asec uls  == applyOrError(asecIfCan,"asec",uls)

    acsc uls  == applyOrError(acscIfCan,"acsc",uls)

    sinh uls  == applyOrError(sinhIfCan,"sinh",uls)

    cosh uls  == applyOrError(coshIfCan,"cosh",uls)

    tanh uls  == applyOrError(tanhIfCan,"tanh",uls)

    coth uls  == applyOrError(cothIfCan,"coth",uls)

    sech uls  == applyOrError(sechIfCan,"sech",uls)

    csch uls  == applyOrError(cschIfCan,"csch",uls)

    asinh uls == applyOrError(asinhIfCan,"asinh",uls)

    acosh uls == applyOrError(acoshIfCan,"acosh",uls)

    atanh uls == applyOrError(atanhIfCan,"atanh",uls)

    acoth uls == applyOrError(acothIfCan,"acoth",uls)

    asech uls == applyOrError(asechIfCan,"asech",uls)

    acsch uls == applyOrError(acschIfCan,"acsch",uls)

    atan uls ==
    -- code is duplicated so that correct error messages will be returned
      coef := coefficient(uls,0)
      (ord := order(uls,0)) = 0 and coef * coef = -1 =>
        error "atan: series expansion has logarithmic term"
      cc : Coef := 
        ord < 0 =>
          TRANSFCN =>
            RATS =>
              lc := coefficient(uls,ord)
              (rat := retractIfCan(lc)@Union(RN,"failed")) case "failed" =>
                (1/2) * pi()
              (rat :: RN) > 0 => (1/2) * pi()
              (-1/2) * pi()
            (1/2) * pi()
          error "atan: series expansion involves transcendental constants"
        coef = 0 => 0
        TRANSFCN => atan coef
        error "atan: series expansion involves transcendental constants"
      (z := recip(1 + uls*uls)) case "failed" =>
        error "atan: leading coefficient not invertible"
      (cc :: ULS) + integrate(differentiate(uls) * (z :: ULS))

    acot uls ==
    -- code is duplicated so that correct error messages will be returned
      coef := coefficient(uls,0)
      (ord := order(uls,0)) = 0 and coef * coef = -1 =>
        error "acot: series expansion has logarithmic term"
      cc : Coef := 
        ord < 0 =>
          RATS =>
            lc := coefficient(uls,ord)
            (rat := retractIfCan(lc)@Union(RN,"failed")) case "failed" => 0
            (rat :: RN) > 0 => 0
            TRANSFCN => pi()
            error "acot: series expansion involves transcendental constants"
          0
        TRANSFCN => acot coef
        error "acot: series expansion involves transcendental constants"
      (z := recip(1 + uls*uls)) case "failed" =>
        error "acot: leading coefficient not invertible"
      (cc :: ULS) - integrate(differentiate(uls) * (z :: ULS))