This file is indexed.

/usr/share/axiom-20170501/src/algebra/EFUPXS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
)abbrev domain EFUPXS ElementaryFunctionsUnivariatePuiseuxSeries
++ Author: Clifton J. Williamson
++ Date Created: 20 February 1990
++ Date Last Updated: 20 February 1990
++ Description:
++ This package provides elementary functions on any Laurent series
++ domain over a field which was constructed from a Taylor series
++ domain.  These functions are implemented by calling the
++ corresponding functions on the Taylor series domain.  We also
++ provide 'partial functions' which compute transcendental
++ functions of Laurent series when possible and return "failed"
++ when this is not possible.

ElementaryFunctionsUnivariatePuiseuxSeries(Coef,ULS,UPXS,EFULS) : 
 SIG == CODE where
  Coef   : Algebra Fraction Integer
  ULS    : UnivariateLaurentSeriesCategory Coef
  UPXS   : UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS)
  EFULS  : PartialTranscendentalFunctions(ULS)

  I    ==> Integer
  NNI  ==> NonNegativeInteger
  RN   ==> Fraction Integer
 
  SIG ==> PartialTranscendentalFunctions(UPXS) with
 
    if Coef has Field then

      "**" : (UPXS,RN) -> UPXS
        ++ z ** r raises a Puiseaux series z to a rational power r
 
    --% Exponentials and Logarithms
 
    exp : UPXS -> UPXS
      ++ exp(z) returns the exponential of a Puiseux series z.

    log : UPXS -> UPXS
      ++ log(z) returns the logarithm of a Puiseux series z.
 
    --% TrigonometricFunctionCategory
 
    sin : UPXS -> UPXS
      ++ sin(z) returns the sine of a Puiseux series z.

    cos : UPXS -> UPXS
      ++ cos(z) returns the cosine of a Puiseux series z.

    tan : UPXS -> UPXS
      ++ tan(z) returns the tangent of a Puiseux series z.

    cot : UPXS -> UPXS
      ++ cot(z) returns the cotangent of a Puiseux series z.

    sec : UPXS -> UPXS
      ++ sec(z) returns the secant of a Puiseux series z.

    csc : UPXS -> UPXS
      ++ csc(z) returns the cosecant of a Puiseux series z.
 
    --% ArcTrigonometricFunctionCategory
 
    asin : UPXS -> UPXS
      ++ asin(z) returns the arc-sine of a Puiseux series z.

    acos : UPXS -> UPXS
      ++ acos(z) returns the arc-cosine of a Puiseux series z.

    atan : UPXS -> UPXS
      ++ atan(z) returns the arc-tangent of a Puiseux series z.

    acot : UPXS -> UPXS
      ++ acot(z) returns the arc-cotangent of a Puiseux series z.

    asec : UPXS -> UPXS
      ++ asec(z) returns the arc-secant of a Puiseux series z.

    acsc : UPXS -> UPXS
      ++ acsc(z) returns the arc-cosecant of a Puiseux series z.
 
    --% HyperbolicFunctionCategory
 
    sinh : UPXS -> UPXS
      ++ sinh(z) returns the hyperbolic sine of a Puiseux series z.

    cosh : UPXS -> UPXS
      ++ cosh(z) returns the hyperbolic cosine of a Puiseux series z.

    tanh : UPXS -> UPXS
      ++ tanh(z) returns the hyperbolic tangent of a Puiseux series z.

    coth : UPXS -> UPXS
      ++ coth(z) returns the hyperbolic cotangent of a Puiseux series z.

    sech : UPXS -> UPXS
      ++ sech(z) returns the hyperbolic secant of a Puiseux series z.

    csch : UPXS -> UPXS
      ++ csch(z) returns the hyperbolic cosecant of a Puiseux series z.
 
    --% ArcHyperbolicFunctionCategory
 
    asinh : UPXS -> UPXS
      ++ asinh(z) returns the inverse hyperbolic sine of a Puiseux series z.

    acosh : UPXS -> UPXS
      ++ acosh(z) returns the inverse hyperbolic cosine of a Puiseux series z.

    atanh : UPXS -> UPXS
      ++ atanh(z) returns the inverse hyperbolic tangent of a Puiseux series z.

    acoth : UPXS -> UPXS
      ++ acoth(z) returns the inverse hyperbolic cotangent 
      ++ of a Puiseux series z.

    asech : UPXS -> UPXS
      ++ asech(z) returns the inverse hyperbolic secant of a Puiseux series z.

    acsch : UPXS -> UPXS
      ++ acsch(z) returns the inverse hyperbolic cosecant 
      ++ of a Puiseux series z.
 
  CODE ==> add

    TRANSFCN : Boolean := Coef has TranscendentalFunctionCategory
 
    --% roots
 
    nthRootIfCan(upxs,n) ==
      n = 1 => upxs
      r := rationalPower upxs; uls := laurentRep upxs
      deg := degree uls
      if zero?(coef := coefficient(uls,deg)) then
        deg := order(uls,deg + 1000)
        zero?(coef := coefficient(uls,deg)) =>
          error "root of series with many leading zero coefficients"
      uls := uls * monomial(1,-deg)$ULS
      (ulsRoot := nthRootIfCan(uls,n)) case "failed" => "failed"
      puiseux(r,ulsRoot :: ULS) * monomial(1,deg * r * inv(n :: RN))
 
    if Coef has Field then
       (upxs:UPXS) ** (q:RN) ==
         num := numer q; den := denom q
         den = 1 => upxs ** num
         r := rationalPower upxs; uls := laurentRep upxs
         deg := degree uls
         if zero?(coef := coefficient(uls,deg)) then
           deg := order(uls,deg + 1000)
           zero?(coef := coefficient(uls,deg)) =>
             error "power of series with many leading zero coefficients"
         ulsPow := (uls * monomial(1,-deg)$ULS) ** q
         puiseux(r,ulsPow) * monomial(1,deg*q*r)
 
    --% transcendental functions
 
    applyIfCan: (ULS -> Union(ULS,"failed"),UPXS) -> Union(UPXS,"failed")
    applyIfCan(fcn,upxs) ==
      uls := fcn laurentRep upxs
      uls case "failed" => "failed"
      puiseux(rationalPower upxs,uls :: ULS)
 
    expIfCan   upxs == applyIfCan(expIfCan,upxs)

    logIfCan   upxs == applyIfCan(logIfCan,upxs)

    sinIfCan   upxs == applyIfCan(sinIfCan,upxs)

    cosIfCan   upxs == applyIfCan(cosIfCan,upxs)

    tanIfCan   upxs == applyIfCan(tanIfCan,upxs)

    cotIfCan   upxs == applyIfCan(cotIfCan,upxs)

    secIfCan   upxs == applyIfCan(secIfCan,upxs)

    cscIfCan   upxs == applyIfCan(cscIfCan,upxs)

    atanIfCan  upxs == applyIfCan(atanIfCan,upxs)

    acotIfCan  upxs == applyIfCan(acotIfCan,upxs)

    sinhIfCan  upxs == applyIfCan(sinhIfCan,upxs)

    coshIfCan  upxs == applyIfCan(coshIfCan,upxs)

    tanhIfCan  upxs == applyIfCan(tanhIfCan,upxs)

    cothIfCan  upxs == applyIfCan(cothIfCan,upxs)

    sechIfCan  upxs == applyIfCan(sechIfCan,upxs)

    cschIfCan  upxs == applyIfCan(cschIfCan,upxs)

    asinhIfCan upxs == applyIfCan(asinhIfCan,upxs)

    acoshIfCan upxs == applyIfCan(acoshIfCan,upxs)

    atanhIfCan upxs == applyIfCan(atanhIfCan,upxs)

    acothIfCan upxs == applyIfCan(acothIfCan,upxs)

    asechIfCan upxs == applyIfCan(asechIfCan,upxs)

    acschIfCan upxs == applyIfCan(acschIfCan,upxs)

    asinIfCan upxs ==
      order(upxs,0) < 0 => "failed"
      (coef := coefficient(upxs,0)) = 0 =>
        integrate((1 - upxs*upxs)**(-1/2) * (differentiate upxs))
      TRANSFCN =>
        cc := asin(coef) :: UPXS
        cc + integrate((1 - upxs*upxs)**(-1/2) * (differentiate upxs))
      "failed"

    acosIfCan upxs ==
      order(upxs,0) < 0 => "failed"
      TRANSFCN =>
        cc := acos(coefficient(upxs,0)) :: UPXS
        cc + integrate(-(1 - upxs*upxs)**(-1/2) * (differentiate upxs))
      "failed"

    asecIfCan upxs ==
      order(upxs,0) < 0 => "failed"
      TRANSFCN =>
        cc := asec(coefficient(upxs,0)) :: UPXS
        f := (upxs*upxs - 1)**(-1/2) * (differentiate upxs)
        (rec := recip upxs) case "failed" => "failed"
        cc + integrate(f * (rec :: UPXS))
      "failed"

    acscIfCan upxs ==
      order(upxs,0) < 0 => "failed"
      TRANSFCN =>
        cc := acsc(coefficient(upxs,0)) :: UPXS
        f := -(upxs*upxs - 1)**(-1/2) * (differentiate upxs)
        (rec := recip upxs) case "failed" => "failed"
        cc + integrate(f * (rec :: UPXS))
      "failed"

    asinhIfCan upxs ==
      order(upxs,0) < 0 => "failed"
      TRANSFCN or (coefficient(upxs,0) = 0) =>
        log(upxs + (1 + upxs*upxs)**(1/2))
      "failed"

    acoshIfCan upxs ==
      TRANSFCN =>
        order(upxs,0) < 0 => "failed"
        log(upxs + (upxs*upxs - 1)**(1/2))
      "failed"

    asechIfCan upxs ==
      TRANSFCN =>
        order(upxs,0) < 0 => "failed"
        (rec := recip upxs) case "failed" => "failed"
        log((1 + (1 - upxs*upxs)*(1/2)) * (rec :: UPXS))
      "failed"

    acschIfCan upxs ==
      TRANSFCN =>
        order(upxs,0) < 0 => "failed"
        (rec := recip upxs) case "failed" => "failed"
        log((1 + (1 + upxs*upxs)*(1/2)) * (rec :: UPXS))
      "failed"
 
    applyOrError:(UPXS -> Union(UPXS,"failed"),String,UPXS) -> UPXS
    applyOrError(fcn,name,upxs) ==
      ans := fcn upxs
      ans case "failed" =>
        error concat(name," of function with singularity")
      ans :: UPXS
 
    exp upxs   == applyOrError(expIfCan,"exp",upxs)

    log upxs   == applyOrError(logIfCan,"log",upxs)

    sin upxs   == applyOrError(sinIfCan,"sin",upxs)

    cos upxs   == applyOrError(cosIfCan,"cos",upxs)

    tan upxs   == applyOrError(tanIfCan,"tan",upxs)

    cot upxs   == applyOrError(cotIfCan,"cot",upxs)

    sec upxs   == applyOrError(secIfCan,"sec",upxs)

    csc upxs   == applyOrError(cscIfCan,"csc",upxs)

    asin upxs  == applyOrError(asinIfCan,"asin",upxs)

    acos upxs  == applyOrError(acosIfCan,"acos",upxs)

    atan upxs  == applyOrError(atanIfCan,"atan",upxs)

    acot upxs  == applyOrError(acotIfCan,"acot",upxs)

    asec upxs  == applyOrError(asecIfCan,"asec",upxs)

    acsc upxs  == applyOrError(acscIfCan,"acsc",upxs)

    sinh upxs  == applyOrError(sinhIfCan,"sinh",upxs)

    cosh upxs  == applyOrError(coshIfCan,"cosh",upxs)

    tanh upxs  == applyOrError(tanhIfCan,"tanh",upxs)

    coth upxs  == applyOrError(cothIfCan,"coth",upxs)

    sech upxs  == applyOrError(sechIfCan,"sech",upxs)

    csch upxs  == applyOrError(cschIfCan,"csch",upxs)

    asinh upxs == applyOrError(asinhIfCan,"asinh",upxs)

    acosh upxs == applyOrError(acoshIfCan,"acosh",upxs)

    atanh upxs == applyOrError(atanhIfCan,"atanh",upxs)

    acoth upxs == applyOrError(acothIfCan,"acoth",upxs)

    asech upxs == applyOrError(asechIfCan,"asech",upxs)

    acsch upxs == applyOrError(acschIfCan,"acsch",upxs)