This file is indexed.

/usr/share/axiom-20170501/src/algebra/EQ.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
)abbrev domain EQ Equation
--FOR THE BENEFIT OF LIBAX0 GENERATION
++ Author: Stephen M. Watt, enhancements by Johannes Grabmeier
++ Date Created: April 1985
++ Date Last Updated: June 3, 1991; September 2, 1992
++ Description:
++ Equations as mathematical objects.  All properties of the basis domain,
++ for example being an abelian group are carried over the equation domain,
++ by performing the structural operations on the left and on the
++ right hand side.
--   The interpreter translates "=" to "equation".  Otherwise, it will
--   find a modemap for "=" in the domain of the arguments.

Equation(S) : SIG == CODE where
  S : Type

  Ex ==> OutputForm

  SIG ==> Type with

    "=" : (S, S) -> $
      ++ a=b creates an equation.

    equation : (S, S) -> $
      ++ equation(a,b) creates an equation.

    swap : $ -> $
      ++ swap(eq) interchanges left and right hand side of equation eq.

    lhs : $ -> S
      ++ lhs(eqn) returns the left hand side of equation eqn.

    rhs : $ -> S
      ++ rhs(eqn) returns the right hand side of equation eqn.

    map : (S -> S, $) -> $
      ++ map(f,eqn) constructs a new equation by applying f to both
      ++ sides of eqn.

    if S has InnerEvalable(Symbol,S) then
             InnerEvalable(Symbol,S)

    if S has SetCategory then

        SetCategory

        CoercibleTo Boolean

        if S has Evalable(S) then

           eval : ($, $) -> $
             ++ eval(eqn, x=f) replaces x by f in equation eqn.

           eval : ($, List $) -> $
             ++ eval(eqn, [x1=v1, ... xn=vn]) 
             ++ replaces xi by vi in equation eqn.

    if S has AbelianSemiGroup then

        AbelianSemiGroup

        "+" : (S, $) -> $
          ++ x+eqn produces a new equation by adding x to both sides of
          ++ equation eqn.

        "+" : ($, S) -> $
          ++ eqn+x produces a new equation by adding x to  both sides of
          ++ equation eqn.

    if S has AbelianGroup then

        AbelianGroup

        leftZero : $ -> $
          ++ leftZero(eq) subtracts the left hand side.

        rightZero : $ -> $
          ++ rightZero(eq) subtracts the right hand side.

        "-" : (S, $) -> $
          ++ x-eqn produces a new equation by subtracting both sides of
          ++ equation eqn from x.

        "-" : ($, S) -> $
          ++ eqn-x produces a new equation by subtracting x from  both sides
          ++ of the equation eqn.

    if S has SemiGroup then

        SemiGroup

        "*" : (S, $) -> $
          ++ x*eqn produces a new equation by multiplying both sides of
          ++ equation eqn by x.

        "*" : ($, S) -> $
          ++ eqn*x produces a new equation by multiplying both sides of
          ++ equation eqn by x.

    if S has Monoid then

        Monoid

        leftOne : $ -> Union($,"failed")
          ++ leftOne(eq) divides by the left hand side, if possible.

        rightOne : $ -> Union($,"failed")
          ++ rightOne(eq) divides by the right hand side, if possible.

    if S has Group then

        Group

        leftOne : $ -> Union($,"failed")
          ++ leftOne(eq) divides by the left hand side.

        rightOne : $ -> Union($,"failed")
          ++ rightOne(eq) divides by the right hand side.

    if S has Ring then

      Ring

      BiModule(S,S)

    if S has CommutativeRing then

      Module(S)

      --Algebra(S)

    if S has IntegralDomain then

      factorAndSplit : $ -> List $
        ++ factorAndSplit(eq) make the right hand side 0 and
        ++ factors the new left hand side. Each factor is equated
        ++ to 0 and put into the resulting list without repetitions.

    if S has PartialDifferentialRing(Symbol) then
      PartialDifferentialRing(Symbol)

    if S has Field then

      VectorSpace(S)

      "/" : ($, $) -> $
        ++ e1/e2 produces a new equation by dividing the left and right
        ++ hand sides of equations e1 and e2.

      inv : $ -> $
        ++ inv(x) returns the multiplicative inverse of x.

    if S has ExpressionSpace then

        subst : ($, $) -> $
          ++ subst(eq1,eq2) substitutes eq2 into both sides of eq1
          ++ the lhs of eq2 should be a kernel

  CODE ==> add

    Rep := Record(lhs: S, rhs: S)

    eq1,eq2: $

    s : S

    if S has IntegralDomain then

        factorAndSplit eq ==
          (S has factor : S -> Factored S) =>
            eq0 := rightZero eq
            [equation(rcf.factor,0) for rcf in factors factor lhs eq0]
          [eq]

    l:S = r:S      == [l, r]

    equation(l, r) == [l, r]    -- hack!  See comment above.

    lhs eqn        == eqn.lhs

    rhs eqn        == eqn.rhs

    swap eqn     == [rhs eqn, lhs eqn]

    map(fn, eqn)   == equation(fn(eqn.lhs), fn(eqn.rhs))

    if S has InnerEvalable(Symbol,S) then
        s:Symbol
        ls:List Symbol
        x:S
        lx:List S

        eval(eqn,s,x) == eval(eqn.lhs,s,x) = eval(eqn.rhs,s,x)

        eval(eqn,ls,lx) == eval(eqn.lhs,ls,lx) = eval(eqn.rhs,ls,lx)

    if S has Evalable(S) then

        eval(eqn1:$, eqn2:$):$ ==
           eval(eqn1.lhs, eqn2 pretend Equation S) =
               eval(eqn1.rhs, eqn2 pretend Equation S)

        eval(eqn1:$, leqn2:List $):$ ==
           eval(eqn1.lhs, leqn2 pretend List Equation S) =
               eval(eqn1.rhs, leqn2 pretend List Equation S)

    if S has SetCategory then

        eq1 = eq2 == (eq1.lhs = eq2.lhs)@Boolean and
                     (eq1.rhs = eq2.rhs)@Boolean

        coerce(eqn:$):Ex == eqn.lhs::Ex = eqn.rhs::Ex

        coerce(eqn:$):Boolean == eqn.lhs = eqn.rhs

    if S has AbelianSemiGroup then

        eq1 + eq2 == eq1.lhs + eq2.lhs = eq1.rhs + eq2.rhs

        s + eq2 == [s,s] + eq2

        eq1 + s == eq1 + [s,s]

    if S has AbelianGroup then

        - eq == (- lhs eq) = (-rhs eq)

        s - eq2 == [s,s] - eq2

        eq1 - s == eq1 - [s,s]

        leftZero eq == 0 = rhs eq - lhs eq

        rightZero eq == lhs eq - rhs eq = 0

        0 == equation(0$S,0$S)

        eq1 - eq2 == eq1.lhs - eq2.lhs = eq1.rhs - eq2.rhs

    if S has SemiGroup then

        eq1:$ * eq2:$ == eq1.lhs * eq2.lhs = eq1.rhs * eq2.rhs

        l:S   * eqn:$ == l       * eqn.lhs = l       * eqn.rhs

        eqn:$ * l:S  ==  eqn.lhs * l    =    eqn.rhs * l
        -- We have to be a bit careful here: raising to a +ve integer is OK
        -- (since it's the equivalent of repeated multiplication)
        -- but other powers may cause contradictions
        -- Watch what else you add here! JHD 2/Aug 1990

    if S has Monoid then

        1 == equation(1$S,1$S)

        recip eq ==
          (lh := recip lhs eq) case "failed" => "failed"
          (rh := recip rhs eq) case "failed" => "failed"
          [lh :: S, rh :: S]

        leftOne eq ==
          (re := recip lhs eq) case "failed" => "failed"
          1 = rhs eq * re

        rightOne eq ==
          (re := recip rhs eq) case "failed" => "failed"
          lhs eq * re = 1

    if S has Group then

        inv eq == [inv lhs eq, inv rhs eq]

        leftOne eq == 1 = rhs eq * inv rhs eq

        rightOne eq == lhs eq * inv rhs eq = 1

    if S has Ring then

        characteristic() == characteristic()$S

        i:Integer * eq:$ == (i::S) * eq

    if S has IntegralDomain then

        factorAndSplit eq ==
          (S has factor : S -> Factored S) =>
            eq0 := rightZero eq
            [equation(rcf.factor,0) for rcf in factors factor lhs eq0]
          (S has Polynomial Integer) =>
            eq0 := rightZero eq
            MF ==> MultivariateFactorize(Symbol, IndexedExponents Symbol, _
               Integer, Polynomial Integer)
            p : Polynomial Integer := (lhs eq0) pretend Polynomial Integer
            [equation((rcf.factor) pretend S,0) _
              for rcf in factors factor(p)$MF]
          [eq]

    if S has PartialDifferentialRing(Symbol) then

        differentiate(eq:$, sym:Symbol):$ ==
           [differentiate(lhs eq, sym), differentiate(rhs eq, sym)]

    if S has Field then

        dimension() == 2 :: CardinalNumber

        eq1:$ / eq2:$ == eq1.lhs / eq2.lhs = eq1.rhs / eq2.rhs

        inv eq == [inv lhs eq, inv rhs eq]

    if S has ExpressionSpace then

        subst(eq1,eq2) ==
            eq3 := eq2 pretend Equation S
            [subst(lhs eq1,eq3),subst(rhs eq1,eq3)]