This file is indexed.

/usr/share/axiom-20170501/src/algebra/ESTOOLS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
)abbrev package ESTOOLS ExpertSystemToolsPackage
++ Author: Brian Dupee
++ Date Created: May 1994
++ Date Last Updated: July 1996
++ Description:
++ \axiom{ExpertSystemToolsPackage} contains some useful functions for use
++ by the computational agents of numerical solvers.

ExpertSystemToolsPackage() : SIG == CODE where

  LEDF  ==> List Expression DoubleFloat
  KEDF  ==> Kernel Expression DoubleFloat
  LKEDF  ==> List Kernel Expression DoubleFloat
  VEDF  ==> Vector Expression DoubleFloat
  VEF  ==> Vector Expression Float
  VMF  ==> Vector MachineFloat
  EF2  ==> ExpressionFunctions2
  EFI  ==> Expression Fraction Integer
  MDF  ==> Matrix DoubleFloat
  LDF  ==> List DoubleFloat
  PDF  ==> Polynomial DoubleFloat
  EDF  ==> Expression DoubleFloat
  EF  ==> Expression Float
  SDF  ==> Stream DoubleFloat
  DF  ==> DoubleFloat
  F  ==> Float
  MF  ==> MachineFloat
  INT  ==> Integer
  NNI  ==> NonNegativeInteger
  LS  ==> List Symbol
  ST  ==> String
  LST  ==> List String
  SS  ==> Stream String
  FI  ==> Fraction Integer
  R  ==> Ring
  OR  ==> OrderedRing
  ON  ==> Record(additions:INT,multiplications:INT,exponentiations:INT,functionCalls:INT)
  RVE   ==> Record(val:EDF,exponent:INT)
  BO  ==> BasicOperator
  OCF  ==> OrderedCompletion Float
  OCDF  ==> OrderedCompletion DoubleFloat
  SOCF  ==> Segment OrderedCompletion Float
  SOCDF  ==> Segment OrderedCompletion DoubleFloat
  Measure  ==> Record(measure:F, name:String, explanations:List String)
  Measure2  ==> Record(measure:F, name:String, explanations:List String, extra:Result)
  CTYPE  ==> Union(continuous: "Continuous at the end points",
               lowerSingular: "There is a singularity at the lower end point",
                upperSingular: "There is a singularity at the upper end point",
                 bothSingular: "There are singularities at both end points",
                  notEvaluated: "End point continuity not yet evaluated")
  RTYPE  ==> Union(finite: "The range is finite",
                lowerInfinite: "The bottom of range is infinite",
                  upperInfinite: "The top of range is infinite",
                    bothInfinite: "Both top and bottom points are infinite",
                      notEvaluated: "Range not yet evaluated")
  STYPE  ==> Union(str:SDF,
                     notEvaluated:"Internal singularities not yet evaluated")
  ATT  ==> Record(endPointContinuity:CTYPE,singularitiesStream:STYPE,range:RTYPE)
  IFV  ==> Record(stiffness:F,stability:F,expense:F,accuracy:F,intermediateResults:F)

  SIG ==> with

    f2df : F -> DF
      ++ f2df(f) is a function to convert a \axiomType{Float} to a
      ++ \axiomType{DoubleFloat}

    ef2edf : EF -> EDF
      ++ ef2edf(f) is a function to convert an \axiomType{Expression Float} 
      ++ to an \axiomType{Expression DoubleFloat}

    ocf2ocdf : OCF -> OCDF
      ++ ocf2ocdf(a) is a function to convert an \axiomType{OrderedCompletion 
      ++ Float} to an \axiomType{OrderedCompletion DoubleFloat}

    socf2socdf : SOCF -> SOCDF
      ++ socf2socdf(a) is a function to convert a \axiomType{Segment OrderedCompletion Float}
      ++ to a \axiomType{Segment OrderedCompletion DoubleFloat}

    convert : List SOCF -> List SOCDF
      ++ convert(l) is a function to convert a \axiomType{Segment OrderedCompletion Float}
      ++ to a \axiomType{Segment OrderedCompletion DoubleFloat}

    df2fi : DF -> FI
      ++ df2fi(n) is a function to convert a \axiomType{DoubleFloat} to a
      ++ \axiomType{Fraction Integer}

    edf2fi : EDF -> FI
      ++ edf2fi(n) maps \axiomType{Expression DoubleFloat} to 
      ++ \axiomType{Fraction Integer}
      ++ It is an error if n is not coercible to Fraction Integer

    edf2df : EDF -> DF
      ++ edf2df(n) maps \axiomType{Expression DoubleFloat} to 
      ++ \axiomType{DoubleFloat}
      ++ It is an error if \spad{n} is not coercible to DoubleFloat

    isQuotient : EDF -> Union(EDF,"failed")
      ++ isQuotient(expr) returns the quotient part of the input
      ++ expression or \spad{"failed"} if the expression is not of that form.

    expenseOfEvaluation : VEDF -> F
      ++ expenseOfEvaluation(o) gives an approximation of the cost of
      ++ evaluating a list of expressions in terms of the number of basic
      ++ operations.
      ++ < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive
      ++ 400 `operation units' -> 0.75 
      ++ 200 `operation units' -> 0.5 
      ++ 83 `operation units' -> 0.25
      ++ ** = 4 units , function calls = 10 units.

    numberOfOperations : VEDF -> ON
      ++ numberOfOperations(ode) counts additions, multiplications, 
      ++ exponentiations and function calls in the input set of expressions.

    edf2efi : EDF -> EFI
      ++ edf2efi(e) coerces \axiomType{Expression DoubleFloat} into 
      ++ \axiomType{Expression Fraction Integer}

    dfRange : SOCDF -> SOCDF
      ++ dfRange(r) converts a range including 
      ++ \inputbitmap{\htbmdir{}/plusminus.bitmap} \infty 
      ++ to \axiomType{DoubleFloat} equavalents.

    dflist : List(Record(left:FI,right:FI)) -> LDF
      ++ dflist(l) returns a list of \axiomType{DoubleFloat} equivalents of list l

    df2mf : DF -> MF
      ++ df2mf(n) coerces a \axiomType{DoubleFloat} to \axiomType{MachineFloat}

    ldf2vmf : LDF -> VMF
      ++ ldf2vmf(l) coerces a \axiomType{List DoubleFloat} to
      ++ \axiomType{List MachineFloat}

    edf2ef : EDF -> EF
      ++ edf2ef(e) maps \axiomType{Expression DoubleFloat} to 
      ++ \axiomType{Expression Float}

    vedf2vef : VEDF -> VEF
      ++ vedf2vef(v) maps \axiomType{Vector Expression DoubleFloat} to 
      ++ \axiomType{Vector Expression Float}

    in? : (DF,SOCDF) -> Boolean
      ++ in?(p,range) tests whether point p is internal to the 
      ++ range range

    df2st : DF -> ST
      ++ df2st(n) coerces a \axiomType{DoubleFloat} to \axiomType{String}

    f2st : F -> ST
      ++ f2st(n) coerces a \axiomType{Float} to \axiomType{String}

    ldf2lst : LDF -> LST
      ++ ldf2lst(ln) coerces a \axiomType{List DoubleFloat} to \axiomType{List String}

    sdf2lst : SDF -> LST
      ++ sdf2lst(ln) coerces a \axiomType{Stream DoubleFloat} to \axiomType{String}

    getlo : SOCDF -> DF
      ++ getlo(u) gets the \axiomType{DoubleFloat} equivalent of
      ++ the first endpoint of the range \spad{u}

    gethi : SOCDF -> DF
      ++ gethi(u) gets the \axiomType{DoubleFloat} equivalent of
      ++ the second endpoint of the range \spad{u}

    concat : (Result,Result) -> Result
      ++ concat(a,b) adds two aggregates of type \axiomType{Result}.

    concat : (List Result) -> Result
      ++ concat(l) concatenates a list of aggregates of type \axiomType{Result}

    outputMeasure : F -> ST
      ++ outputMeasure(n) rounds \spad{n} to 3 decimal places and outputs
      ++ it as a string

    measure2Result : Measure -> Result
      ++ measure2Result(m) converts a measure record into a \axiomType{Result}

    measure2Result : Measure2 -> Result
      ++ measure2Result(m) converts a measure record into a \axiomType{Result}

    att2Result : ATT -> Result
      ++ att2Result(m) converts a attributes record into a \axiomType{Result}

    iflist2Result : IFV -> Result
      ++ iflist2Result(m) converts attributes record into a \axiomType{Result}

    pdf2ef : PDF -> EF
      ++ pdf2ef(p) coerces a \axiomType{Polynomial DoubleFloat} to 
      ++ \axiomType{Expression Float}

    pdf2df : PDF -> DF
      ++ pdf2df(p) coerces a \axiomType{Polynomial DoubleFloat} to 
      ++ \axiomType{DoubleFloat}. It is an error if \axiom{p} is not
      ++ retractable to DoubleFloat.

    df2ef : DF -> EF
      ++ df2ef(a) coerces a \axiomType{DoubleFloat} to 
      ++ \axiomType{Expression Float}

    fi2df : FI -> DF
      ++ fi2df(f) coerces a \axiomType{Fraction Integer} to 
      ++ \axiomType{DoubleFloat}

    mat : (LDF,NNI) -> MDF
      ++ mat(a,n) constructs a one-dimensional matrix of a.

  CODE ==> add

    mat(a:LDF,n:NNI):MDF ==
      empty?(a)$LDF => zero(1,n)$MDF
      matrix(list([i for i in a for j in 1..n])$(List LDF))$MDF

    f2df(f:F):DF == (convert(f)@DF)$F

    ef2edf(f:EF):EDF == map(f2df,f)$EF2(F,DF)

    fi2df(f:FI):DF == coerce(f)$DF

    ocf2ocdf(a:OCF):OCDF ==
      finite? a => (f2df(retract(a)@F))::OCDF
      a pretend OCDF

    socf2socdf(a:SOCF):SOCDF ==
      segment(ocf2ocdf(lo a),ocf2ocdf(hi a))

    convert(l:List SOCF):List SOCDF == [socf2socdf a for a in l]

    pdf2df(p:PDF):DF == retract(p)@DF

    df2ef(a:DF):EF ==
      b := convert(a)@Float
      coerce(b)$EF

    pdf2ef(p:PDF):EF == df2ef(pdf2df(p))

    edf2fi(m:EDF):FI == retract(retract(m)@DF)@FI

    edf2df(m:EDF):DF == retract(m)@DF

    df2fi(r:DF):FI == (retract(r)@FI)$DF

    dfRange(r:SOCDF):SOCDF ==
      if infinite?(lo(r))$OCDF then r := -(max()$DF :: OCDF)..hi(r)$SOCDF
      if infinite?(hi(r))$OCDF then r := lo(r)$SOCDF..(max()$DF :: OCDF)
      r

    dflist(l:List(Record(left:FI,right:FI))):LDF == [u.left :: DF for u in l]

    edf2efi(f:EDF):EFI == map(df2fi,f)$EF2(DF,FI)

    df2st(n:DF):String == (convert((convert(n)@Float)$DF)@ST)$Float

    f2st(n:F):String == (convert(n)@ST)$Float

    ldf2lst(ln:LDF):LST == [df2st f for f in ln]

    sdf2lst(ln:SDF):LST ==
      explicitlyFinite? ln => 
        m := map(df2st,ln)$StreamFunctions2(DF,ST)
        if index?(20,m)$SS then
          split!(m,20)
          m := concat(m,".......")
        m := complete(m)$SS 
        entries(m)$SS
      empty()$LST

    df2mf(n:DF):MF == (df2fi(n))::MF

    ldf2vmf(l:LDF):VMF ==
      m := [df2mf(n) for n in l]
      vector(m)$VMF

    edf2ef(e:EDF):EF == map(convert$DF,e)$EF2(DF,Float)

    vedf2vef(vedf:VEDF):VEF == vector([edf2ef e for e in members(vedf)])

    getlo(u:SOCDF):DF == retract(lo(u))@DF

    gethi(u:SOCDF):DF == retract(hi(u))@DF
  
    in?(p:DF,range:SOCDF):Boolean ==
      top := gethi(range)
      bottom := getlo(range)
      a:Boolean := (p < top)$DF
      b:Boolean := (p > bottom)$DF
      (a and b)@Boolean

    isQuotient(expr:EDF):Union(EDF,"failed") ==
      (k := mainKernel expr) case KEDF =>
        (expr = inv(f := k :: KEDF :: EDF)$EDF)$EDF => f
        (numerator expr) = 1 => denominator expr
        "failed"
      "failed"

    numberOfOperations1(fn:EDF,numbersSoFar:ON):ON ==
      (u := isQuotient(fn)) case EDF =>
        numbersSoFar := numberOfOperations1(u,numbersSoFar)
      (p := isPlus(fn)) case LEDF =>
        p := coerce(p)@LEDF
        np := #p
        numbersSoFar.additions := (numbersSoFar.additions)+np-1
        for i in 1..np repeat
          numbersSoFar := numberOfOperations1(p.i,numbersSoFar)
        numbersSoFar
      (t:=isTimes(fn)) case LEDF => 
        t := coerce(t)@LEDF
        nt := #t
        numbersSoFar.multiplications := (numbersSoFar.multiplications)+nt-1
        for i in 1..nt repeat
          numbersSoFar := numberOfOperations1(t.i,numbersSoFar)
        numbersSoFar
      if (e:=isPower(fn)) case RVE then
        e := coerce(e)@RVE
        e.exponent>1 =>  
          numbersSoFar.exponentiations := inc(numbersSoFar.exponentiations)
          numbersSoFar := numberOfOperations1(e.val,numbersSoFar)
      lk := kernels(fn)
      #lk = 1 =>        -- #lk = 0 => constant found (no further action)
        k := first(lk)$LKEDF
        n := name(operator(k)$KEDF)$BO
        entry?(n,variables(fn)$EDF)$LS => numbersSoFar  -- solo variable found
        a := first(argument(k)$KEDF)$LEDF
        numbersSoFar.functionCalls := inc(numbersSoFar.functionCalls)$INT
        numbersSoFar := numberOfOperations1(a,numbersSoFar)
      numbersSoFar
      
    numberOfOperations(ode:VEDF):ON ==
      n:ON := [0,0,0,0]
      for i in 1..#ode repeat
        n:ON := numberOfOperations1(ode.i,n)
      n

    expenseOfEvaluation(o:VEDF):F ==
      ln:ON := numberOfOperations(o)
      a := ln.additions
      m := ln.multiplications
      e := ln.exponentiations
      f := 10*ln.functionCalls
      n := (a + m + 4*e + 10*e)
      (1.0-exp((-n::F/288.0))$F)

    concat(a:Result,b:Result):Result ==
      membersOfa := (members(a)@List(Record(key:Symbol,entry:Any)))
      membersOfb := (members(b)@List(Record(key:Symbol,entry:Any)))
      allMembers:=
        concat(membersOfa,membersOfb)$List(Record(key:Symbol,entry:Any))
      construct(allMembers)

    concat(l:List Result):Result ==
      import List Result
      empty? l => empty()$Result
      f := first l
      if empty?(r := rest l) then
        f
      else
        concat(f,concat r)

    outputMeasure(m:F):ST ==
      fl:Float := round(m*(f:= 1000.0))/f
      convert(fl)@ST

    measure2Result(m:Measure):Result ==
      mm := coerce(m.measure)$AnyFunctions1(Float)
      mmr:Record(key:Symbol,entry:Any) := [bestMeasure@Symbol,mm]
      mn := coerce(m.name)$AnyFunctions1(ST)
      mnr:Record(key:Symbol,entry:Any) := [nameOfRoutine@Symbol,mn]
      me := coerce(m.explanations)$AnyFunctions1(List String)
      mer:Record(key:Symbol,entry:Any) := [allMeasures@Symbol,me]
      mr := construct([mmr,mnr,mer])$Result
      met := coerce(mr)$AnyFunctions1(Result)
      meth:Record(key:Symbol,entry:Any):=[method@Symbol,met]
      construct([meth])$Result

    measure2Result(m:Measure2):Result ==
      mm := coerce(m.measure)$AnyFunctions1(Float)
      mmr:Record(key:Symbol,entry:Any) := [bestMeasure@Symbol,mm]
      mn := coerce(m.name)$AnyFunctions1(ST)
      mnr:Record(key:Symbol,entry:Any) := [nameOfRoutine@Symbol,mn]
      me := coerce(m.explanations)$AnyFunctions1(List String)
      mer:Record(key:Symbol,entry:Any) := [allMeasures@Symbol,me]
      mx := coerce(m.extra)$AnyFunctions1(Result)
      mxr:Record(key:Symbol,entry:Any) := [other@Symbol,mx]
      mr := construct([mmr,mnr,mer,mxr])$Result
      met := coerce(mr)$AnyFunctions1(Result)
      meth:Record(key:Symbol,entry:Any):=[method@Symbol,met]
      construct([meth])$Result

    att2Result(att:ATT):Result ==
      aepc := coerce(att.endPointContinuity)$AnyFunctions1(CTYPE)
      ar := coerce(att.range)$AnyFunctions1(RTYPE)
      as := coerce(att.singularitiesStream)$AnyFunctions1(STYPE)
      aa:List Any := [aepc,ar,as]
      aaa := coerce(aa)$AnyFunctions1(List Any)
      aar:Record(key:Symbol,entry:Any) := [attributes@Symbol,aaa]
      construct([aar])$Result

    iflist2Result(ifv:IFV):Result ==
      ifvs:List String := 
        [concat(["stiffness: ",outputMeasure(ifv.stiffness)]),
          concat(["stability: ",outputMeasure(ifv.stability)]),
           concat(["expense: ",outputMeasure(ifv.expense)]),
            concat(["accuracy: ",outputMeasure(ifv.accuracy)]),
             concat(["intermediateResults: ",_
                     outputMeasure(ifv.intermediateResults)])]
      ifa:= coerce(ifvs)$AnyFunctions1(List String)
      ifr:Record(key:Symbol,entry:Any) := [intensityFunctions@Symbol,ifa]
      construct([ifr])$Result