This file is indexed.

/usr/share/axiom-20170501/src/algebra/EXPR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
)abbrev domain EXPR Expression
++ Author: Manuel Bronstein
++ Date Created: 19 July 1988
++ Date Last Updated: October 1993 (P.Gianni), February 1995 (MB)
++ Description: 
++ Top-level mathematical expressions involving symbolic functions.

Expression(R) : SIG == CODE where
  R : OrderedSet

  Q   ==> Fraction Integer
  K   ==> Kernel %
  MP  ==> SparseMultivariatePolynomial(R, K)
  AF  ==> AlgebraicFunction(R, %)
  EF  ==> ElementaryFunction(R, %)
  CF  ==> CombinatorialFunction(R, %)
  LF  ==> LiouvillianFunction(R, %)
  AN  ==> AlgebraicNumber
  KAN ==> Kernel AN
  FSF ==> FunctionalSpecialFunction(R, %)
  ESD ==> ExpressionSpace_&(%)
  FSD ==> FunctionSpace_&(%, R)
  SYMBOL ==> "%symbol"
  ALGOP  ==> "%alg"
  POWER  ==> "%power"::Symbol
  SUP    ==> SparseUnivariatePolynomial

  SIG ==> FunctionSpace R with

    if R has IntegralDomain then

      AlgebraicallyClosedFunctionSpace R

      TranscendentalFunctionCategory

      CombinatorialOpsCategory

      LiouvillianFunctionCategory

      SpecialFunctionCategory

      reduce: % -> %
        ++ reduce(f) simplifies all the unreduced algebraic quantities
        ++ present in f by applying their defining relations.

      number?: % -> Boolean
        ++ number?(f) tests if f is rational

      simplifyPower: (%,Integer) -> %
        ++ simplifyPower(f,n) is not documented

      if R has GcdDomain then

        factorPolynomial : SUP  % -> Factored SUP %
          ++ factorPolynomial(p) is not documented

        squareFreePolynomial : SUP % -> Factored SUP %
          ++ squareFreePolynomial(p) is not documented

      if R has RetractableTo Integer then RetractableTo AN

  CODE ==> add

    import KernelFunctions2(R, %)

    retNotUnit     : % -> R

    retNotUnitIfCan: % -> Union(R, "failed")

    belong? op == true

    retNotUnit x ==
      (u := constantIfCan(k := retract(x)@K)) case R => u::R
      error "Not retractable"

    retNotUnitIfCan x ==
      (r := retractIfCan(x)@Union(K,"failed")) case "failed" => "failed"
      constantIfCan(r::K)

    if R has IntegralDomain then

      reduc  : (%, List Kernel %) -> %

      commonk   : (%, %) -> List K

      commonk0  : (List K, List K) -> List K

      toprat    : % -> %

      algkernels: List K -> List K

      evl       : (MP, K, SparseUnivariatePolynomial %) -> Fraction MP

      evl0      : (MP, K) -> SparseUnivariatePolynomial Fraction MP

      Rep := Fraction MP

      0                == 0$Rep

      1                == 1$Rep

      one? x           == (x = 1)$Rep

      zero? x          == zero?(x)$Rep

      - x:%            == -$Rep x

      n:Integer * x:%  == n *$Rep x

      coerce(n:Integer) ==  coerce(n)$Rep@Rep::%

      x:% * y:%        == reduc(x *$Rep y, commonk(x, y))

      x:% + y:%        == reduc(x +$Rep y, commonk(x, y))

      (x:% - y:%):%    == reduc(x -$Rep y, commonk(x, y))

      x:% / y:%        == reduc(x /$Rep y, commonk(x, y))

      number?(x:%):Boolean ==
        if R has RetractableTo(Integer) then
          ground?(x) or ((retractIfCan(x)@Union(Q,"failed")) case Q)
        else
          ground?(x)

      simplifyPower(x:%,n:Integer):% ==
        k : List K := kernels x
        is?(x,POWER) =>
          -- Look for a power of a number in case we can do a simplification
          args : List % := argument first k
          not(#args = 2) => error "Too many arguments to **"
          number?(args.1) =>
             reduc((args.1) **$Rep n, algkernels kernels (args.1))**(args.2)
          (first args)**(n*second(args))
        reduc(x **$Rep n, algkernels k)

      x:% ** n:NonNegativeInteger ==
        n = 0 => 1$%
        n = 1 => x
        simplifyPower(numerator x,n pretend Integer) / 
           simplifyPower(denominator x,n pretend Integer)

      x:% ** n:Integer ==
        n = 0 => 1$%
        n = 1 => x
        n = -1 => 1/x
        simplifyPower(numerator x,n) / 
           simplifyPower(denominator x,n)

      x:% ** n:PositiveInteger == 
        n = 1 => x
        simplifyPower(numerator x,n pretend Integer) / 
           simplifyPower(denominator x,n pretend Integer)

      x:% < y:%        == x <$Rep y

      x:% = y:%        == x =$Rep y

      numer x          == numer(x)$Rep

      denom x          == denom(x)$Rep

      coerce(p:MP):%   == coerce(p)$Rep

      reduce x         == reduc(x, algkernels kernels x)

      commonk(x, y)    == commonk0(algkernels kernels x, algkernels kernels y)

      algkernels l     == select_!(x +-> has?(operator x, ALGOP), l)

      toprat f == ratDenom(f,algkernels kernels f)$AlgebraicManipulations(R, %)

      x:MP / y:MP ==
       reduc(x /$Rep y,commonk0(algkernels variables x,algkernels variables y))

-- since we use the reduction from FRAC SMP which asssumes that the
-- variables are independent, we must remove algebraic from the denominators
      reducedSystem(m:Matrix %):Matrix(R) ==
        mm:Matrix(MP) := reducedSystem(map(toprat, m))$Rep
        reducedSystem(mm)$MP

-- since we use the reduction from FRAC SMP which asssumes that the
-- variables are independent, we must remove algebraic from the denominators
      reducedSystem(m:Matrix %, v:Vector %):
       Record(mat:Matrix R, vec:Vector R) ==
        r:Record(mat:Matrix MP, vec:Vector MP) :=
          reducedSystem(map(toprat, m), map(toprat, v))$Rep
        reducedSystem(r.mat, r.vec)$MP

-- The result MUST be left sorted deepest first   MB 3/90
      commonk0(x, y) ==
        ans := empty()$List(K)
        for k in reverse_! x repeat if member?(k, y) then ans := concat(k, ans)
        ans

      rootOf(x:SparseUnivariatePolynomial %, v:Symbol) == rootOf(x,v)$AF

      pi()                      == pi()$EF

      exp x                     == exp(x)$EF

      log x                     == log(x)$EF

      sin x                     == sin(x)$EF

      cos x                     == cos(x)$EF

      tan x                     == tan(x)$EF

      cot x                     == cot(x)$EF

      sec x                     == sec(x)$EF

      csc x                     == csc(x)$EF

      asin x                    == asin(x)$EF

      acos x                    == acos(x)$EF

      atan x                    == atan(x)$EF

      acot x                    == acot(x)$EF

      asec x                    == asec(x)$EF

      acsc x                    == acsc(x)$EF

      sinh x                    == sinh(x)$EF

      cosh x                    == cosh(x)$EF

      tanh x                    == tanh(x)$EF

      coth x                    == coth(x)$EF

      sech x                    == sech(x)$EF

      csch x                    == csch(x)$EF

      asinh x                   == asinh(x)$EF

      acosh x                   == acosh(x)$EF

      atanh x                   == atanh(x)$EF

      acoth x                   == acoth(x)$EF

      asech x                   == asech(x)$EF

      acsch x                   == acsch(x)$EF

      abs x                     == abs(x)$FSF

      Gamma x                   == Gamma(x)$FSF

      Gamma(a, x)               == Gamma(a, x)$FSF

      Beta(x,y)                 == Beta(x,y)$FSF

      digamma x                 == digamma(x)$FSF

      polygamma(k,x)            == polygamma(k,x)$FSF

      besselJ(v,x)              == besselJ(v,x)$FSF

      besselY(v,x)              == besselY(v,x)$FSF

      besselI(v,x)              == besselI(v,x)$FSF

      besselK(v,x)              == besselK(v,x)$FSF

      airyAi x                  == airyAi(x)$FSF

      airyBi x                  == airyBi(x)$FSF

      x:% ** y:%                == x **$CF y

      factorial x               == factorial(x)$CF

      binomial(n, m)            == binomial(n, m)$CF

      permutation(n, m)         == permutation(n, m)$CF

      factorials x              == factorials(x)$CF

      factorials(x, n)          == factorials(x, n)$CF

      summation(x:%, n:Symbol)           == summation(x, n)$CF

      summation(x:%, s:SegmentBinding %) == summation(x, s)$CF

      product(x:%, n:Symbol)             == product(x, n)$CF

      product(x:%, s:SegmentBinding %)   == product(x, s)$CF

      erf x                              == erf(x)$LF

      Ei x                               == Ei(x)$LF

      Si x                               == Si(x)$LF

      Ci x                               == Ci(x)$LF

      li x                               == li(x)$LF

      dilog x                            == dilog(x)$LF

      fresnelS x                         == fresnelS(x)$LF

      fresnelC x                         == fresnelC(x)$LF

      integral(x:%, n:Symbol)            == integral(x, n)$LF

      integral(x:%, s:SegmentBinding %)  == integral(x, s)$LF

      operator op ==
        belong?(op)$AF  => operator(op)$AF
        belong?(op)$EF  => operator(op)$EF
        belong?(op)$CF  => operator(op)$CF
        belong?(op)$LF  => operator(op)$LF
        belong?(op)$FSF => operator(op)$FSF
        belong?(op)$FSD => operator(op)$FSD
        belong?(op)$ESD => operator(op)$ESD
        nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K)
        (n := arity op) case "failed" => operator name op
        operator(name op, n::NonNegativeInteger)

      reduc(x, l) ==
        for k in l repeat
          p := minPoly k
          x := evl(numer x, k, p) /$Rep evl(denom x, k, p)
        x

      evl0(p, k) ==
        numer univariate(p::Fraction(MP),
                     k)$PolynomialCategoryQuotientFunctions(IndexedExponents K,
                                                            K,R,MP,Fraction MP)

      -- uses some operations from Rep instead of % in order not to
      -- reduce recursively during those operations.
      evl(p, k, m) ==
        degree(p, k) < degree m => p::Fraction(MP)
        (((evl0(p, k) pretend SparseUnivariatePolynomial($)) rem m)
          pretend SparseUnivariatePolynomial Fraction MP) (k::MP::Fraction(MP))

      if R has GcdDomain then

        noalg?: SUP % -> Boolean

        noalg? p ==
          while p ^= 0 repeat
            not empty? algkernels kernels leadingCoefficient p => return false
            p := reductum p
          true

        gcdPolynomial(p:SUP %, q:SUP %) ==
          noalg? p and noalg? q => gcdPolynomial(p, q)$Rep
          gcdPolynomial(p, q)$GcdDomain_&(%)

        factorPolynomial(x:SUP %) : Factored SUP % ==
          uf:= factor(x pretend SUP(Rep))$SupFractionFactorizer(
                                          IndexedExponents K,K,R,MP)
          uf pretend Factored SUP %

        squareFreePolynomial(x:SUP %) : Factored SUP % ==
          uf:= squareFree(x pretend SUP(Rep))$SupFractionFactorizer(
                                          IndexedExponents K,K,R,MP)
          uf pretend Factored SUP %

      if R is AN then
        -- this is to force the coercion R -> EXPR R to be used
        -- instead of the coercioon AN -> EXPR R which loops.
        -- simpler looking code will fail! MB 10/91
        coerce(x:AN):% == (monomial(x, 0$IndexedExponents(K))$MP)::%

      if (R has RetractableTo Integer) then

        x:% ** r:Q                           == x **$AF r

        minPoly k                            == minPoly(k)$AF

        definingPolynomial x                 == definingPolynomial(x)$AF

        retract(x:%):Q                       == retract(x)$Rep

        retractIfCan(x:%):Union(Q, "failed") == retractIfCan(x)$Rep

        if not(R is AN) then

          k2expr  : KAN -> %

          smp2expr: SparseMultivariatePolynomial(Integer, KAN) -> %

          R2AN    : R  -> Union(AN, "failed")

          k2an    : K  -> Union(AN, "failed")

          smp2an  : MP -> Union(AN, "failed")


          coerce(x:AN):% == smp2expr(numer x) / smp2expr(denom x)

          k2expr k       == map(x+->x::%, k)$ExpressionSpaceFunctions2(AN, %)

          smp2expr p ==
            map(k2expr,x+->x::%,p)_
              $PolynomialCategoryLifting(IndexedExponents KAN,
                   KAN, Integer, SparseMultivariatePolynomial(Integer, KAN), %)

          retractIfCan(x:%):Union(AN, "failed") ==
            ((n:= smp2an numer x) case AN) and ((d:= smp2an denom x) case AN)
                 => (n::AN) / (d::AN)
            "failed"

          R2AN r ==
            (u := retractIfCan(r::%)@Union(Q, "failed")) case Q => u::Q::AN
            "failed"

          k2an k ==
            not(belong?(op := operator k)$AN) => "failed"
            arg:List(AN) := empty()
            for x in argument k repeat
              if (a := retractIfCan(x)@Union(AN, "failed")) case "failed" then
                return "failed"
              else arg := concat(a::AN, arg)
            (operator(op)$AN) reverse_!(arg)

          smp2an p ==
            (x1 := mainVariable p) case "failed" => R2AN leadingCoefficient p
            up := univariate(p, k := x1::K)
            (t  := k2an k) case "failed" => "failed"
            ans:AN := 0
            while not ground? up repeat
              (c:=smp2an leadingCoefficient up) case "failed" _
                => return "failed"
              ans := ans + (c::AN) * (t::AN) ** (degree up)
              up  := reductum up
            (c := smp2an leadingCoefficient up) case "failed" => "failed"
            ans + c::AN

      if R has ConvertibleTo InputForm then

        convert(x:%):InputForm == convert(x)$Rep

        import MakeUnaryCompiledFunction(%, %, %)

        eval(f:%, op: BasicOperator, g:%, x:Symbol):% == 
          eval(f,[op],[g],x)

        eval(f:%, ls:List BasicOperator, lg:List %, x:Symbol) ==
          -- handle subsrcipted symbols by renaming -> eval -> renaming back
          llsym:List List Symbol:=[variables g for g in lg]
          lsym:List Symbol:= removeDuplicates concat llsym
          lsd:List Symbol:=select (scripted?,lsym)
          empty? lsd=> eval(f,ls,[compiledFunction(g, x) for g in lg])
          ns:List Symbol:=[new()$Symbol for i in lsd]
          lforwardSubs:List Equation % := _
            [(i::%)= (j::%) for i in lsd for j in ns]
          lbackwardSubs:List Equation % := _
            [(j::%)= (i::%) for i in lsd for j in ns]
          nlg:List % :=[subst(g,lforwardSubs) for g in lg]
          res:% :=eval(f, ls, [compiledFunction(g, x) for g in nlg])
          subst(res,lbackwardSubs)

      if R has PatternMatchable Integer then

        patternMatch(x:%, p:Pattern Integer,
         l:PatternMatchResult(Integer, %)) ==
          patternMatch(x, p, l)$PatternMatchFunctionSpace(Integer, R, %)

      if R has PatternMatchable Float then

        patternMatch(x:%, p:Pattern Float,
         l:PatternMatchResult(Float, %)) ==
          patternMatch(x, p, l)$PatternMatchFunctionSpace(Float, R, %)

    else  -- R is not an integral domain

      operator op ==
        belong?(op)$FSD => operator(op)$FSD
        belong?(op)$ESD => operator(op)$ESD
        nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K)
        (n := arity op) case "failed" => operator name op
        operator(name op, n::NonNegativeInteger)

      if R has Ring then

        Rep := MP

        0              == 0$Rep

        1              == 1$Rep

        - x:%          == -$Rep x

        n:Integer *x:% == n *$Rep x

        x:% * y:%      == x *$Rep y

        x:% + y:%      == x +$Rep y

        x:% = y:%      == x =$Rep y

        x:% < y:%      == x <$Rep y

        numer x        == x@Rep

        coerce(p:MP):% == p

        reducedSystem(m:Matrix %):Matrix(R) ==
          reducedSystem(m)$Rep

        reducedSystem(m:Matrix %, v:Vector %):
         Record(mat:Matrix R, vec:Vector R) ==
          reducedSystem(m, v)$Rep

        if R has ConvertibleTo InputForm then

          convert(x:%):InputForm == convert(x)$Rep

        if R has PatternMatchable Integer then

          kintmatch: (K,Pattern Integer,PatternMatchResult(Integer,Rep))
                                     -> PatternMatchResult(Integer, Rep)

          kintmatch(k, p, l) ==
            patternMatch(k, p, l pretend PatternMatchResult(Integer, %)
              )$PatternMatchKernel(Integer, %)
                pretend PatternMatchResult(Integer, Rep)

          patternMatch(x:%, p:Pattern Integer,
           l:PatternMatchResult(Integer, %)) ==
            patternMatch(x@Rep, p,
                         l pretend PatternMatchResult(Integer, Rep),
                          kintmatch
                           )$PatternMatchPolynomialCategory(Integer,
                            IndexedExponents K, K, R, Rep)
                              pretend PatternMatchResult(Integer, %)

        if R has PatternMatchable Float then

          kfltmatch: (K, Pattern Float, PatternMatchResult(Float, Rep))
                                     -> PatternMatchResult(Float, Rep)

          kfltmatch(k, p, l) ==
            patternMatch(k, p, l pretend PatternMatchResult(Float, %)
              )$PatternMatchKernel(Float, %)
                pretend PatternMatchResult(Float, Rep)

          patternMatch(x:%, p:Pattern Float,
           l:PatternMatchResult(Float, %)) ==
            patternMatch(x@Rep, p,
                         l pretend PatternMatchResult(Float, Rep),
                          kfltmatch
                           )$PatternMatchPolynomialCategory(Float,
                            IndexedExponents K, K, R, Rep)
                              pretend PatternMatchResult(Float, %)

      else   -- R is not even a ring

        if R has AbelianMonoid then

          import ListToMap(K, %)

          kereval        : (K, List K, List %) -> %

          subeval        : (K, List K, List %) -> %

          Rep := FreeAbelianGroup K

          0              == 0$Rep

          x:% + y:%      == x +$Rep y

          x:% = y:%      == x =$Rep y

          x:% < y:%      == x <$Rep y

          coerce(k:K):%  == coerce(k)$Rep

          kernels x      == [f.gen for f in terms x]

          coerce(x:R):%  == (zero? x => 0; constantKernel(x)::%)

          retract(x:%):R == (zero? x => 0; retNotUnit x)

          coerce(x:%):OutputForm == coerce(x)$Rep

          kereval(k, lk, lv) == 
           match(lk, lv, k, (x2:K):% +-> map(x1 +-> eval(x1, lk, lv), x2))

          subeval(k, lk, lv) ==
            match(lk, lv, k,
             (x:K):% +->
               kernel(operator x, [subst(a, lk, lv) for a in argument x]))

          isPlus x ==
            empty?(l := terms x) or empty? rest l => "failed"
            [t.exp *$Rep t.gen for t in l]$List(%)

          isMult x ==
            empty?(l := terms x) or not empty? rest l => "failed"
            t := first l
            [t.exp, t.gen]

          eval(x:%, lk:List K, lv:List %) ==
            _+/[t.exp * kereval(t.gen, lk, lv) for t in terms x]

          subst(x:%, lk:List K, lv:List %) ==
            _+/[t.exp * subeval(t.gen, lk, lv) for t in terms x]

          retractIfCan(x:%):Union(R, "failed") ==
            zero? x => 0
            retNotUnitIfCan x

          if R has AbelianGroup then -(x:%) == -$Rep x

        else   -- R is nothing

            import ListToMap(K, %)

            Rep := K

            x:% < y:%      == x <$Rep y

            x:% = y:%      == x =$Rep y

            coerce(k:K):%  == k

            kernels x      == [x pretend K]

            coerce(x:R):%  == constantKernel x

            retract(x:%):R == retNotUnit x

            retractIfCan(x:%):Union(R, "failed") == retNotUnitIfCan x

            coerce(x:%):OutputForm               == coerce(x)$Rep

            eval(x:%, lk:List K, lv:List %) ==
              match(lk, lv, x pretend K, 
               (x1:K):% +-> map(x2 +-> eval(x2, lk, lv), x1))

            subst(x, lk, lv) ==
              match(lk, lv, x pretend K,
               (x1:K):% +-> 
                 kernel(operator x1, [subst(a, lk, lv) for a in argument x1]))

            if R has ConvertibleTo InputForm then
              convert(x:%):InputForm == convert(x)$Rep