This file is indexed.

/usr/share/axiom-20170501/src/algebra/EXPRODE.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
)abbrev package EXPRODE ExpressionSpaceODESolver
++ Author: Manuel Bronstein
++ Date Created: 5 Mar 1990
++ Date Last Updated: 30 September 1993
++ References:
++ Dupe99 An Automatic Symbolic-Numeric Taylor Series ODE Solver
++ Description: 
++ Taylor series solutions of explicit ODE's;

ExpressionSpaceODESolver(R, F) : SIG == CODE where
  R : Join(OrderedSet, IntegralDomain, ConvertibleTo InputForm)
  F : FunctionSpace R

  K   ==> Kernel F
  P   ==> SparseMultivariatePolynomial(R, K)
  OP  ==> BasicOperator
  SY  ==> Symbol
  UTS ==> UnivariateTaylorSeries(F, x, center)
  MKF ==> MakeUnaryCompiledFunction(F, UTS, UTS)
  MKL ==> MakeUnaryCompiledFunction(F, List UTS, UTS)
  A1  ==> AnyFunctions1(UTS)
  AL1 ==> AnyFunctions1(List UTS)
  EQ  ==> Equation F
  ODE ==> UnivariateTaylorSeriesODESolver(F, UTS)

  SIG ==> with

    seriesSolve : (EQ, OP, EQ, EQ) -> Any
      ++ seriesSolve(eq,y,x=a, y a = b) returns a Taylor series solution
      ++ of eq around x = a with initial condition \spad{y(a) = b}.
      ++ Note that eq must be of the form
      ++ \spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.

    seriesSolve : (EQ, OP, EQ, List F) -> Any
      ++ seriesSolve(eq,y,x=a,[b0,...,b(n-1)]) returns a Taylor series
      ++ solution of eq around \spad{x = a} with initial conditions
      ++ \spad{y(a) = b0}, \spad{y'(a) = b1},
      ++ \spad{y''(a) = b2}, ...,\spad{y(n-1)(a) = b(n-1)}
      ++ eq must be of the form
      ++ \spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) +
      ++ g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.

    seriesSolve : (List EQ, List OP, EQ, List EQ) -> Any
      ++ seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])
      ++ returns a taylor series solution of \spad{[eq1,...,eqn]} around
      ++ \spad{x = a} with initial conditions \spad{yi(a) = bi}.
      ++ Note that eqi must be of the form
      ++ \spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) +
      ++ gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.

    seriesSolve : (List EQ, List OP, EQ, List F) -> Any
      ++ seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])
      ++ is equivalent to
      ++ \spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,
      ++ [y1 a = b1,..., yn a = bn])}.

    seriesSolve : (List F, List OP, EQ, List F) -> Any
      ++ seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])
      ++ is equivalent to
      ++ \spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.

    seriesSolve : (List F, List OP, EQ, List EQ) -> Any
      ++ seriesSolve([eq1,...,eqn], [y1,...,yn], 
      ++ x = a,[y1 a = b1,..., yn a = bn])
      ++ is equivalent to
      ++ \spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a,
      ++ [y1 a = b1,..., yn a = bn])}.

    seriesSolve : (EQ, OP, EQ, F) -> Any
      ++ seriesSolve(eq,y, x=a, b) is equivalent to
      ++ \spad{seriesSolve(eq, y, x=a, y a = b)}.

    seriesSolve : (F, OP, EQ, F) -> Any
      ++ seriesSolve(eq, y, x = a, b) is equivalent to
      ++ \spad{seriesSolve(eq = 0, y, x = a, y a = b)}.

    seriesSolve : (F, OP, EQ, EQ) -> Any
      ++ seriesSolve(eq, y, x = a, y a = b) is equivalent to
      ++ \spad{seriesSolve(eq=0, y, x=a, y a = b)}.

    seriesSolve : (F, OP, EQ, List F) -> Any
      ++ seriesSolve(eq, y, x = a, [b0,...,bn]) is equivalent to
      ++ \spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.

  CODE ==> add

    checkCompat: (OP, EQ, EQ) -> F
    checkOrder1: (F, OP, K, SY, F) -> F
    checkOrderN: (F, OP, K, SY, F, NonNegativeInteger) -> F
    checkSystem: (F, List K, List F) -> F
    div2exquo  : F -> F
    smp2exquo  : P -> F
    k2exquo    : K -> F
    diffRhs    : (F, F) -> F
    diffRhsK   : (K, F) -> F
    findCompat : (F, List EQ) -> F
    findEq     : (K, SY, List F) -> F
    localInteger: F -> F

    opelt := operator("elt"::Symbol)$OP
    opex  := operator("fixedPointExquo"::Symbol)$OP
    opint := operator("integer"::Symbol)$OP

    Rint? := R has IntegerNumberSystem

    localInteger n == (Rint? => n; opint n)

    diffRhs(f, g) == diffRhsK(retract(f)@K, g)

    k2exquo k ==
      is?(op := operator k, "%diff"::Symbol) =>
        error "Improper differential equation"
      kernel(op, [div2exquo f for f in argument k]$List(F))

    smp2exquo p ==
      map(k2exquo,x+->x::F,p)_
       $PolynomialCategoryLifting(IndexedExponents K,K, R, P, F)

    div2exquo f ==
      ((d := denom f) = 1) => f
      opex(smp2exquo numer f, smp2exquo d)

    -- if g is of the form a * k + b, then return -b/a
    diffRhsK(k, g) ==
      h := univariate(g, k)
      (degree(numer h) <= 1) and ground? denom h =>
        - coefficient(numer h, 0) / coefficient(numer h, 1)
      error "Improper differential equation"

    checkCompat(y, eqx, eqy) ==
      lhs(eqy) =$F y(rhs eqx) => rhs eqy
      error "Improper initial value"

    findCompat(yx, l) ==
      for eq in l repeat
        yx =$F lhs eq => return rhs eq
      error "Improper initial value"

    findEq(k, x, sys) ==
      k := retract(differentiate(k::F, x))@K
      for eq in sys repeat
        member?(k, kernels eq) => return eq
      error "Improper differential equation"

    checkOrder1(diffeq, y, yx, x, sy) ==
      div2exquo subst(diffRhs(differentiate(yx::F,x),diffeq),[yx],[sy])

    checkOrderN(diffeq, y, yx, x, sy, n) ==
      zero? n => error "No initial value(s) given"
      m     := (minIndex(l := [retract(f := yx::F)@K]$List(K)))::F
      lv    := [opelt(sy, localInteger m)]$List(F)
      for i in 2..n repeat
        l  := concat(retract(f := differentiate(f, x))@K, l)
        lv := concat(opelt(sy, localInteger(m := m + 1)), lv)
      div2exquo subst(diffRhs(differentiate(f, x), diffeq), l, lv)

    checkSystem(diffeq, yx, lv) ==
      for k in kernels diffeq repeat
        is?(k, "%diff"::SY) =>
          return div2exquo subst(diffRhsK(k, diffeq), yx, lv)
      0

    seriesSolve(l:List EQ, y:List OP, eqx:EQ, eqy:List EQ) ==
      seriesSolve([lhs deq - rhs deq for deq in l]$List(F), y, eqx, eqy)

    seriesSolve(l:List EQ, y:List OP, eqx:EQ, y0:List F) ==
      seriesSolve([lhs deq - rhs deq for deq in l]$List(F), y, eqx, y0)

    seriesSolve(l:List F, ly:List OP, eqx:EQ, eqy:List EQ) ==
      seriesSolve(l, ly, eqx,
                  [findCompat(y rhs eqx, eqy) for y in ly]$List(F))

    seriesSolve(diffeq:EQ, y:OP, eqx:EQ, eqy:EQ) ==
      seriesSolve(lhs diffeq - rhs diffeq, y, eqx, eqy)

    seriesSolve(diffeq:EQ, y:OP, eqx:EQ, y0:F) ==
      seriesSolve(lhs diffeq - rhs diffeq, y, eqx, y0)

    seriesSolve(diffeq:EQ, y:OP, eqx:EQ, y0:List F) ==
      seriesSolve(lhs diffeq - rhs diffeq, y, eqx, y0)

    seriesSolve(diffeq:F, y:OP, eqx:EQ, eqy:EQ) ==
      seriesSolve(diffeq, y, eqx, checkCompat(y, eqx, eqy))

    seriesSolve(diffeq:F, y:OP, eqx:EQ, y0:F) ==
      x      := symbolIfCan(retract(lhs eqx)@K)::SY
      sy     := name y
      yx     := retract(y lhs eqx)@K
      f      := checkOrder1(diffeq, y, yx, x, sy::F)
      center := rhs eqx
      coerce(ode1(compiledFunction(f, sy)$MKF, y0)$ODE)$A1

    seriesSolve(diffeq:F, y:OP, eqx:EQ, y0:List F) ==
      x      := symbolIfCan(retract(lhs eqx)@K)::SY
      sy     := new()$SY
      yx     := retract(y lhs eqx)@K
      f      := checkOrderN(diffeq, y, yx, x, sy::F, #y0)
      center := rhs eqx
      coerce(ode(compiledFunction(f, sy)$MKL, y0)$ODE)$A1

    seriesSolve(sys:List F, ly:List OP, eqx:EQ, l0:List F) ==
      x      := symbolIfCan(kx := retract(lhs eqx)@K)::SY
      fsy    := (sy := new()$SY)::F
      m      := (minIndex(l0) - 1)::F
      yx     := concat(kx, [retract(y lhs eqx)@K for y in ly]$List(K))
      lelt   := [opelt(fsy, localInteger(m := m+1)) for k in yx]$List(F)
      sys    := [findEq(k, x, sys) for k in rest yx]
      l      := [checkSystem(eq, yx, lelt) for eq in sys]$List(F)
      center := rhs eqx
      coerce(mpsode(l0,[compiledFunction(f,sy)$MKL for f in l])$ODE)$AL1