This file is indexed.

/usr/share/axiom-20170501/src/algebra/FEXPR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
)abbrev domain FEXPR FortranExpression
++ Author: Mike Dewar
++ Date Created:  December 1993
++ Date Last Updated: 12 July 1994 added RetractableTo(R)
++ Description: 
++ A domain of expressions involving functions which can be
++ translated into standard Fortran-77, with some extra extensions from
++ the NAG Fortran Library.  

FortranExpression(basicSymbols,subscriptedSymbols,R) : SIG == CODE where
  basicSymbols : List Symbol
  subscriptedSymbols : List Symbol
  R : FortranMachineTypeCategory

  EXPR ==> Expression
  EXF2 ==> ExpressionFunctions2
  S    ==> Symbol
  L    ==> List
  BO   ==> BasicOperator
  FRAC ==> Fraction
  POLY ==> Polynomial

  SIG ==> Join(ExpressionSpace,Algebra(R),RetractableTo(R),
                   PartialDifferentialRing(Symbol)) with

    retract : EXPR R -> $
      ++ retract(e) takes e and transforms it into a 
      ++ FortranExpression checking that it contains no non-Fortran
      ++ functions, and that it only contains the given basic symbols
      ++ and subscripted symbols which correspond to scalar and array
      ++ parameters respectively.

    retractIfCan : EXPR R -> Union($,"failed")
      ++ retractIfCan(e) takes e and tries to transform it into a 
      ++ FortranExpression checking that it contains no non-Fortran
      ++ functions, and that it only contains the given basic symbols
      ++ and subscripted symbols which correspond to scalar and array
      ++ parameters respectively.

    retract : S -> $
      ++ retract(e) takes e and transforms it into a FortranExpression
      ++ checking that it is one of the given basic symbols
      ++ or subscripted symbols which correspond to scalar and array
      ++ parameters respectively.

    retractIfCan : S -> Union($,"failed")
      ++ retractIfCan(e) takes e and tries to transform it into a 
      ++ FortranExpression checking that it is one of the given basic symbols
      ++ or subscripted symbols which correspond to scalar and array
      ++ parameters respectively.

    coerce : $ -> EXPR R
      ++ coerce(x) is not documented

    if (R has RetractableTo(Integer)) then

      retract : EXPR Integer -> $
        ++ retract(e) takes e and transforms it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retractIfCan : EXPR Integer -> Union($,"failed")
        ++ retractIfCan(e) takes e and tries to transform it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retract : FRAC POLY  Integer -> $
        ++ retract(e) takes e and transforms it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retractIfCan : FRAC POLY  Integer -> Union($,"failed")
        ++ retractIfCan(e) takes e and tries to transform it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retract : POLY  Integer -> $
        ++ retract(e) takes e and transforms it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retractIfCan : POLY  Integer -> Union($,"failed")
        ++ retractIfCan(e) takes e and tries to transform it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

    if (R has RetractableTo(Float)) then

      retract : EXPR Float -> $
        ++ retract(e) takes e and transforms it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retractIfCan : EXPR Float -> Union($,"failed")
        ++ retractIfCan(e) takes e and tries to transform it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retract : FRAC POLY  Float -> $
        ++ retract(e) takes e and transforms it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retractIfCan : FRAC POLY  Float -> Union($,"failed")
        ++ retractIfCan(e) takes e and tries to transform it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retract : POLY  Float -> $
        ++ retract(e) takes e and transforms it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

      retractIfCan : POLY  Float -> Union($,"failed")
        ++ retractIfCan(e) takes e and tries to transform it into a 
        ++ FortranExpression checking that it contains no non-Fortran
        ++ functions, and that it only contains the given basic symbols
        ++ and subscripted symbols which correspond to scalar and array
        ++ parameters respectively.

    abs : $ -> $
      ++ abs(x) represents the Fortran intrinsic function ABS

    sqrt : $ -> $
      ++ sqrt(x) represents the Fortran intrinsic function SQRT

    exp : $ -> $
      ++ exp(x) represents the Fortran intrinsic function EXP

    log : $ -> $
      ++ log(x) represents the Fortran intrinsic function LOG

    log10 : $ -> $
      ++ log10(x) represents the Fortran intrinsic function LOG10

    sin : $ -> $
      ++ sin(x) represents the Fortran intrinsic function SIN

    cos : $ -> $
      ++ cos(x) represents the Fortran intrinsic function COS

    tan : $ -> $
      ++ tan(x) represents the Fortran intrinsic function TAN

    asin : $ -> $
      ++ asin(x) represents the Fortran intrinsic function ASIN

    acos : $ -> $
      ++ acos(x) represents the Fortran intrinsic function ACOS

    atan : $ -> $
      ++ atan(x) represents the Fortran intrinsic function ATAN

    sinh : $ -> $
      ++ sinh(x) represents the Fortran intrinsic function SINH

    cosh : $ -> $
      ++ cosh(x) represents the Fortran intrinsic function COSH

    tanh : $ -> $
      ++ tanh(x) represents the Fortran intrinsic function TANH

    pi : () -> $
      ++ pi(x) represents the NAG Library function X01AAF which returns 
      ++  an approximation to the value of pi

    variables : $ -> L S
      ++ variables(e) return a list of all the variables in \spad{e}.

    useNagFunctions : () -> Boolean
      ++ useNagFunctions() indicates whether NAG functions are being used
      ++  for mathematical and machine constants.

    useNagFunctions : Boolean -> Boolean
      ++ useNagFunctions(v) sets the flag which controls whether NAG functions 
      ++  are being used for mathematical and machine constants.  The previous
      ++  value is returned.

  CODE ==> EXPR R add

    -- The standard FORTRAN-77 intrinsic functions, plus nthRoot which
    -- can be translated into an arithmetic expression:
    f77Functions : L S := [abs,sqrt,exp,log,log10,sin,cos,tan,asin,acos,
                           atan,sinh,cosh,tanh,nthRoot,%power]

    nagFunctions : L S := [pi, X01AAF]

    useNagFunctionsFlag : Boolean := true

    -- Local functions to check for "unassigned" symbols etc.

    mkEqn(s1:Symbol,s2:Symbol):Equation EXPR(R) ==
      equation(s2::EXPR(R),script(s1,scripts(s2))::EXPR(R))

    fixUpSymbols(u:EXPR R):Union(EXPR R,"failed") ==
      -- If its a univariate expression then just fix it up:
      syms   : L S := variables(u)
      (#basicSymbols = 1) and zero?(#subscriptedSymbols) =>
        not (#syms = 1) => "failed"
        subst(u,equation(first(syms)::EXPR(R),first(basicSymbols)::EXPR(R)))
      -- We have one variable but it is subscripted:
      zero?(#basicSymbols) and (#subscriptedSymbols = 1) =>
        -- Make sure we don't have both X and X_i
        for s in syms repeat
          not scripted?(s) => return "failed"
        not ((#(syms:=removeDuplicates! [name(s) for s in syms]))=1)=> "failed"
        sym : Symbol := first subscriptedSymbols
        subst(u,[mkEqn(sym,i) for i in variables(u)]) 
      "failed"

    extraSymbols?(u:EXPR R):Boolean ==
      syms   : L S := [name(v) for v in variables(u)]
      extras : L S := setDifference(syms,
                                    setUnion(basicSymbols,subscriptedSymbols))
      not empty? extras

    checkSymbols(u:EXPR R):EXPR(R) ==
      syms   : L S := [name(v) for v in variables(u)]
      extras : L S := setDifference(syms,
                                    setUnion(basicSymbols,subscriptedSymbols))
      not empty? extras => 
        m := fixUpSymbols(u)
        m case EXPR(R) => m::EXPR(R)
        error("Extra symbols detected:",[string(v) for v in extras]$L(String))
      u

    notSymbol?(v:BO):Boolean ==
      s : S := name v
      member?(s,basicSymbols) or 
        scripted?(s) and member?(name s,subscriptedSymbols) => false
      true

    extraOperators?(u:EXPR R):Boolean ==
      ops    : L S := [name v for v in operators(u) | notSymbol?(v)]
      if useNagFunctionsFlag then
        fortranFunctions : L S := append(f77Functions,nagFunctions)
      else
        fortranFunctions : L S := f77Functions
      extras : L S := setDifference(ops,fortranFunctions)
      not empty? extras

    checkOperators(u:EXPR R):Void ==
      ops    : L S := [name v for v in operators(u) | notSymbol?(v)]
      if useNagFunctionsFlag then
        fortranFunctions : L S := append(f77Functions,nagFunctions)
      else
        fortranFunctions : L S := f77Functions
      extras : L S := setDifference(ops,fortranFunctions)
      not empty? extras => 
        error("Non FORTRAN-77 functions detected:",[string(v) for v in extras])
      void()

    checkForNagOperators(u:EXPR R):$ ==
      useNagFunctionsFlag =>
        import Pi
        import PiCoercions(R)
        piOp : BasicOperator := operator X01AAF
        piSub : Equation EXPR R :=
          equation(pi()$Pi::EXPR(R),kernel(piOp,0::EXPR(R))$EXPR(R))
        subst(u,piSub) pretend $
      u pretend $

    -- Conditional retractions:

    if R has RetractableTo(Integer) then 

      retractIfCan(u:POLY Integer):Union($,"failed") ==
        retractIfCan((u::EXPR Integer)$EXPR(Integer))@Union($,"failed")

      retract(u:POLY Integer):$ ==
        retract((u::EXPR Integer)$EXPR(Integer))@$

      retractIfCan(u:FRAC POLY Integer):Union($,"failed") ==
        retractIfCan((u::EXPR Integer)$EXPR(Integer))@Union($,"failed")

      retract(u:FRAC POLY  Integer):$ ==
        retract((u::EXPR Integer)$EXPR(Integer))@$

      int2R(u:Integer):R == u::R

      retractIfCan(u:EXPR Integer):Union($,"failed") ==
        retractIfCan(map(int2R,u)$EXF2(Integer,R))@Union($,"failed")

      retract(u:EXPR Integer):$ ==
        retract(map(int2R,u)$EXF2(Integer,R))@$

    if R has RetractableTo(Float) then 

      retractIfCan(u:POLY Float):Union($,"failed") ==
        retractIfCan((u::EXPR Float)$EXPR(Float))@Union($,"failed")

      retract(u:POLY Float):$ ==
        retract((u::EXPR Float)$EXPR(Float))@$

      retractIfCan(u:FRAC POLY Float):Union($,"failed") ==
        retractIfCan((u::EXPR Float)$EXPR(Float))@Union($,"failed")

      retract(u:FRAC POLY  Float):$ ==
        retract((u::EXPR Float)$EXPR(Float))@$

      float2R(u:Float):R == (u::R)

      retractIfCan(u:EXPR Float):Union($,"failed") ==
        retractIfCan(map(float2R,u)$EXF2(Float,R))@Union($,"failed")

      retract(u:EXPR Float):$ ==
        retract(map(float2R,u)$EXF2(Float,R))@$

    -- Exported Functions

    useNagFunctions():Boolean == useNagFunctionsFlag

    useNagFunctions(v:Boolean):Boolean == 
      old := useNagFunctionsFlag
      useNagFunctionsFlag := v
      old
 
    log10(x:$):$ ==
      kernel(operator log10,x)

    pi():$ == kernel(operator X01AAF,0)

    coerce(u:$):EXPR R == u pretend EXPR(R)

    retractIfCan(u:EXPR R):Union($,"failed") ==
      if (extraSymbols? u) then 
        m := fixUpSymbols(u)
        m case "failed" => return "failed"
        u := m::EXPR(R)
      extraOperators? u => "failed"
      checkForNagOperators(u)

    retract(u:EXPR R):$ ==
      u:=checkSymbols(u)
      checkOperators(u)
      checkForNagOperators(u)

    retractIfCan(u:Symbol):Union($,"failed") ==
      not (member?(u,basicSymbols) or
           scripted?(u) and member?(name u,subscriptedSymbols)) => "failed"
      (((u::EXPR(R))$(EXPR R))pretend Rep)::$

    retract(u:Symbol):$ ==
      res : Union($,"failed") := retractIfCan(u)
      res case "failed" => error("Illegal Symbol Detected:",u::String)
      res::$