This file is indexed.

/usr/share/axiom-20170501/src/algebra/FFCAT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
)abbrev category FFCAT FunctionFieldCategory
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 19 Mai 1993
++ Description:
++ Function field of a curve
++ This category is a model for the function field of a
++ plane algebraic curve.

FunctionFieldCategory(F, UP, UPUP) : Category == SIG where
  F   : UniqueFactorizationDomain
  UP  : UnivariatePolynomialCategory F
  UPUP: UnivariatePolynomialCategory Fraction UP

  Z   ==> Integer
  Q   ==> Fraction F
  P   ==> Polynomial F
  RF  ==> Fraction UP
  QF  ==> Fraction UPUP
  SY  ==> Symbol
  REC ==> Record(num:$, den:UP, derivden:UP, gd:UP)

  SIG ==> MonogenicAlgebra(RF, UPUP) with

    numberOfComponents : () -> NonNegativeInteger
      ++numberOfComponents() returns the number of absolutely irreducible
      ++ components.
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X numberOfComponents()$R

    genus : () -> NonNegativeInteger
      ++genus() returns the genus of one absolutely irreducible component
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X genus()$R

    absolutelyIrreducible? : () -> Boolean
      ++absolutelyIrreducible?() tests if the curve absolutely irreducible?
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R2 := RadicalFunctionField(INT, P0, P1, 2 * x**2, 4)
      ++X absolutelyIrreducible?()$R2

    rationalPoint? : (F, F) -> Boolean
      ++rationalPoint?(a, b) tests if \spad{(x=a,y=b)} is on the curve.
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X rationalPoint?(0,0)$R
      ++X R2 := RadicalFunctionField(INT, P0, P1, 2 * x**2, 4)
      ++X rationalPoint?(0,0)$R2

    branchPointAtInfinity? : () -> Boolean
      ++branchPointAtInfinity?() tests if there is a branch point 
      ++ at infinity.
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X branchPointAtInfinity?()$R
      ++X R2 := RadicalFunctionField(INT, P0, P1, 2 * x**2, 4)
      ++X branchPointAtInfinity?()$R

    branchPoint? : F -> Boolean
      ++branchPoint?(a) tests whether \spad{x = a} is a branch point.

    branchPoint? : UP -> Boolean
      ++branchPoint?(p) tests whether \spad{p(x) = 0} is a branch point.

    singularAtInfinity? : () -> Boolean
      ++singularAtInfinity?() tests if there is a singularity at infinity.

    singular? : F -> Boolean
      ++singular?(a) tests whether \spad{x = a} is singular.

    singular? : UP -> Boolean
      ++singular?(p) tests whether \spad{p(x) = 0} is singular.

    ramifiedAtInfinity? : () -> Boolean
      ++ramifiedAtInfinity?() tests if infinity is ramified.

    ramified? : F -> Boolean
      ++ramified?(a) tests whether \spad{x = a} is ramified.

    ramified? : UP -> Boolean
      ++ramified?(p) tests whether \spad{p(x) = 0} is ramified.

    integralBasis : () -> Vector $
      ++integralBasis() returns the integral basis for the curve.
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X integralBasis()$R

    integralBasisAtInfinity: () -> Vector $
      ++integralBasisAtInfinity() returns the local integral basis 
      ++ at infinity
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X integralBasisAtInfinity()$R

    integralAtInfinity? : $  -> Boolean
      ++integralAtInfinity?() tests if f is locally integral at infinity.

    integral? : $  -> Boolean
      ++integral?() tests if f is integral over \spad{k[x]}.

    complementaryBasis : Vector $ -> Vector $
      ++complementaryBasis(b1,...,bn) returns the complementary basis
      ++ \spad{(b1',...,bn')} of \spad{(b1,...,bn)}.

    normalizeAtInfinity : Vector $ -> Vector $
      ++normalizeAtInfinity(v) makes v normal at infinity.

    reduceBasisAtInfinity : Vector $ -> Vector $
      ++reduceBasisAtInfinity(b1,...,bn) returns \spad{(x**i * bj)}
      ++ for all i,j such that \spad{x**i*bj} is locally integral 
      ++ at infinity.

    integralMatrix : () -> Matrix RF
      ++integralMatrix() returns M such that
      ++ \spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},
      ++ where \spad{(w1,...,wn)} is the integral basis of
      ++ \spadfunFrom{integralBasis}{FunctionFieldCategory}.
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X integralMatrix()$R

    inverseIntegralMatrix : () -> Matrix RF
      ++inverseIntegralMatrix() returns M such that
      ++ \spad{M (w1,...,wn) = (1, y, ..., y**(n-1))}
      ++ where \spad{(w1,...,wn)} is the integral basis of
      ++ \spadfunFrom{integralBasis}{FunctionFieldCategory}.
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X inverseIntegralMatrix()$R

    integralMatrixAtInfinity : () -> Matrix RF
      ++integralMatrixAtInfinity() returns M such that
      ++ \spad{(v1,...,vn) = M (1, y, ..., y**(n-1))}
      ++ where \spad{(v1,...,vn)} is the local integral basis at infinity
      ++ returned by \spad{infIntBasis()}.
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X integralMatrixAtInfinity()$R

    inverseIntegralMatrixAtInfinity: () -> Matrix RF
      ++inverseIntegralMatrixAtInfinity() returns M such
      ++ that \spad{M (v1,...,vn) = (1, y, ..., y**(n-1))}
      ++ where \spad{(v1,...,vn)} is the local integral basis at infinity
      ++ returned by \spad{infIntBasis()}.
      ++
      ++X P0 := UnivariatePolynomial(x, Integer)
      ++X P1 := UnivariatePolynomial(y, Fraction P0)
      ++X R := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20)
      ++X inverseIntegralMatrixAtInfinity()$R

    yCoordinates : $ -> Record(num:Vector(UP), den:UP)
      ++yCoordinates(f) returns \spad{[[A1,...,An], D]} such that
      ++ \spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.

    represents : (Vector UP, UP) -> $
      ++represents([A0,...,A(n-1)],D) returns
      ++ \spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.

    integralCoordinates : $ -> Record(num:Vector(UP), den:UP)
      ++integralCoordinates(f) returns \spad{[[A1,...,An], D]} such that
      ++ \spad{f = (A1 w1 +...+ An wn) / D}  where \spad{(w1,...,wn)} is the
      ++ integral basis returned by \spad{integralBasis()}.

    integralRepresents : (Vector UP, UP) -> $
      ++integralRepresents([A1,...,An], D) returns
      ++ \spad{(A1 w1+...+An wn)/D}
      ++ where \spad{(w1,...,wn)} is the integral
      ++ basis of \spad{integralBasis()}.

    integralDerivationMatrix : (UP -> UP) -> Record(num:Matrix(UP),den:UP)
      ++integralDerivationMatrix(d) extends the derivation d from UP to $
      ++ and returns (M, Q) such that the i^th row of M divided by Q form
      ++ the coordinates of \spad{d(wi)} with respect to \spad{(w1,...,wn)}
      ++ where \spad{(w1,...,wn)} is the integral basis returned
      ++ by integralBasis().

    integral? : ($,  F) -> Boolean
      ++integral?(f, a) tests whether f is locally integral at \spad{x = a}.

    integral? : ($, UP) -> Boolean
      ++integral?(f, p) tests whether f is locally integral at 
      ++ \spad{p(x) = 0}

    differentiate : ($, UP -> UP) -> $
      ++differentiate(x, d) extends the derivation d from UP to $ and
      ++ applies it to x.

    represents : (Vector UP, UP) -> $
      ++represents([A0,...,A(n-1)],D) returns
      ++ \spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.

    primitivePart : $ -> $
      ++primitivePart(f) removes the content of the denominator and
      ++ the common content of the numerator of f.

    elt : ($, F, F) -> F
      ++elt(f,a,b) or f(a, b) returns the value of f 
      ++ at the point \spad{(x = a, y = b)}
      ++ if it is not singular.

    elliptic : () -> Union(UP, "failed")
      ++elliptic() returns \spad{p(x)} if the curve is the elliptic
      ++ defined by \spad{y**2 = p(x)}, "failed" otherwise.

    hyperelliptic : () -> Union(UP, "failed")
      ++hyperelliptic() returns \spad{p(x)} if the curve is the 
      ++ hyperelliptic
      ++ defined by \spad{y**2 = p(x)}, "failed" otherwise.

    algSplitSimple : ($, UP -> UP) -> REC
      ++algSplitSimple(f, D) returns \spad{[h,d,d',g]} such that 
      ++ \spad{f=h/d},
      ++ \spad{h} is integral at all the normal places w.r.t. \spad{D},
      ++ \spad{d' = Dd}, \spad{g = gcd(d, discriminant())} and \spad{D}
      ++ is the derivation to use. \spad{f} must have at most simple finite
      ++ poles.

    if F has Field then

      nonSingularModel : SY -> List Polynomial F
        ++nonSingularModel(u) returns the equations in u1,...,un of
        ++ an affine non-singular model for the curve.

    if F has Finite then

      rationalPoints: () -> List List F
        ++rationalPoints() returns the list of all the affine 
        ++rational points.
   add

    import InnerCommonDenominator(UP, RF, Vector UP, Vector RF)
    import UnivariatePolynomialCommonDenominator(UP, RF, UPUP)

    repOrder: (Matrix RF, Z) -> Z
    Q2RF    : Q  -> RF
    infOrder: RF -> Z
    infValue: RF -> Fraction F
    intvalue: (Vector UP, F, F) -> F
    rfmonom : Z  -> RF
    kmin    : (Matrix RF,Vector Q) -> Union(Record(pos:Z,km:Z),"failed")

    Q2RF q                 == numer(q)::UP / denom(q)::UP
    infOrder f             == (degree denom f)::Z - (degree numer f)::Z
    integral? f            == ground?(integralCoordinates(f).den)
    integral?(f:$, a:F)    == (integralCoordinates(f).den)(a) ^= 0
    absolutelyIrreducible? == numberOfComponents() = 1
    yCoordinates f         == splitDenominator coordinates f

    hyperelliptic() ==
      degree(f := definingPolynomial()) ^= 2 => "failed"
      (u:=retractIfCan(reductum f)@Union(RF,"failed"))
        case "failed" => "failed"
      (v:=retractIfCan(-(u::RF) / leadingCoefficient f)@Union(UP, "failed"))
        case "failed" => "failed"
      odd? degree(p := v::UP) => p
      "failed"

    algSplitSimple(f, derivation) ==
      cd := splitDenominator lift f
      dd := (cd.den exquo (g := gcd(cd.den, derivation(cd.den))))::UP
      [reduce(inv(g::RF) * cd.num), dd, derivation dd,
                                    gcd(dd, retract(discriminant())@UP)]

    elliptic() ==
      (u := hyperelliptic()) case "failed" => "failed"
      degree(p := u::UP) = 3 => p
      "failed"

    rationalPoint?(x, y)   ==
      zero?((definingPolynomial() (y::UP::RF)) (x::UP::RF))

    if F has Field then
      import PolyGroebner(F)
      import MatrixCommonDenominator(UP, RF)

      UP2P  : (UP,   P)    -> P
      UPUP2P: (UPUP, P, P) -> P

      UP2P(p, x) ==
        (map((s:F):P +-> s::P, p)_
          $UnivariatePolynomialCategoryFunctions2(F, UP,
                                     P, SparseUnivariatePolynomial P)) x

      UPUP2P(p, x, y) ==
        (map((s:RF):P +-> UP2P(retract(s)@UP, x),p)_
          $UnivariatePolynomialCategoryFunctions2(RF, UPUP,
                                     P, SparseUnivariatePolynomial P)) y

      nonSingularModel u ==
        d    := commonDenominator(coordinates(w := integralBasis()))::RF
        vars := [concat(string u, string i)::SY for i in 1..(n := #w)]
        x    := "%%dummy1"::SY
        y    := "%%dummy2"::SY
        select_!(s+->zero?(degree(s, x)) and zero?(degree(s, y)),
                 lexGroebner([v::P - UPUP2P(lift(d * w.i), x::P, y::P)
                    for v in vars for i in 1..n], concat([x, y], vars)))

    if F has Finite then
      ispoint: (UPUP, F, F) -> List F

-- must use the 'elt function explicitely or the compiler takes 45 mins
-- on that function    MB 5/90
-- still takes ages : I split the expression up. JHD 6/Aug/90
      ispoint(p, x, y) ==
        jhd:RF:=p(y::UP::RF)
        zero?(jhd (x::UP::RF)) => [x, y]
        empty()

      rationalPoints() ==
        p := definingPolynomial()
        concat [[pt for y in 1..size()$F | not empty?(pt :=
          ispoint(p, index(x::PositiveInteger)$F,
                     index(y::PositiveInteger)$F))]$List(List F)
                                for x in 1..size()$F]$List(List(List F))

    intvalue(v, x, y) ==
      singular? x => error "Point is singular"
      mini := minIndex(w := integralBasis())
      rec := yCoordinates(+/[qelt(v, i)::RF * qelt(w, i)
                           for i in mini .. maxIndex w])
      n   := +/[(qelt(rec.num, i) x) *
                (y ** ((i - mini)::NonNegativeInteger))
                           for i in mini .. maxIndex w]
      zero?(d := (rec.den) x) =>
        zero? n => error "0/0 -- cannot compute value yet"
        error "Shouldn't happen"
      (n exquo d)::F

    elt(f, x, y) ==
      rec := integralCoordinates f
      n   := intvalue(rec.num, x, y)
      zero?(d := (rec.den) x) =>
        zero? n => error "0/0 -- cannot compute value yet"
        error "Function has a pole at the given point"
      (n exquo d)::F

    primitivePart f ==
      cd := yCoordinates f
      d  := gcd([content qelt(cd.num, i)
                 for i in minIndex(cd.num) .. maxIndex(cd.num)]$List(F))
                   * primitivePart(cd.den)
      represents [qelt(cd.num, i) / d
               for i in minIndex(cd.num) .. maxIndex(cd.num)]$Vector(RF)

    reduceBasisAtInfinity b ==
      x := monomial(1, 1)$UP ::RF
      concat([[f for j in 0.. while
                integralAtInfinity?(f := x**j * qelt(b, i))]$Vector($)
                      for i in minIndex b .. maxIndex b]$List(Vector $))

    complementaryBasis b ==
      m := inverse(traceMatrix b)::Matrix(RF)
      [represents row(m, i) for i in minRowIndex m .. maxRowIndex m]

    integralAtInfinity? f ==
      not any?(s +-> infOrder(s) < 0,
         coordinates(f) * inverseIntegralMatrixAtInfinity())$Vector(RF)

    numberOfComponents() ==
      count(integralAtInfinity?, integralBasis())$Vector($)

    represents(v:Vector UP, d:UP) ==
      represents
        [qelt(v, i) / d for i in minIndex v .. maxIndex v]$Vector(RF)

    genus() ==
      ds := discriminant()
      d  := degree(retract(ds)@UP) + infOrder(ds * determinant(
             integralMatrixAtInfinity() * inverseIntegralMatrix()) ** 2)
      dd := (((d exquo 2)::Z - rank()) exquo numberOfComponents())::Z
      (dd + 1)::NonNegativeInteger

    repOrder(m, i) ==
      nostart:Boolean := true
      ans:Z := 0
      r := row(m, i)
      for j in minIndex r .. maxIndex r | qelt(r, j) ^= 0 repeat
        ans :=
          nostart => (nostart := false; infOrder qelt(r, j))
          min(ans, infOrder qelt(r,j))
      nostart => error "Null row"
      ans

    infValue f ==
      zero? f => 0
      (n := infOrder f) > 0 => 0
      zero? n =>
        (leadingCoefficient numer f) / (leadingCoefficient denom f)
      error "f not locally integral at infinity"

    rfmonom n ==
      n < 0 => inv(monomial(1, (-n)::NonNegativeInteger)$UP :: RF)
      monomial(1, n::NonNegativeInteger)$UP :: RF

    kmin(m, v) ==
      nostart:Boolean := true
      k:Z := 0
      ii  := minRowIndex m - (i0  := minIndex v)
      for i in minIndex v .. maxIndex v | qelt(v, i) ^= 0 repeat
        nk := repOrder(m, i + ii)
        if nostart then (nostart := false; k := nk; i0 := i)
        else
          if nk < k then (k := nk; i0 := i)
      nostart => "failed"
      [i0, k]

    normalizeAtInfinity w ==
      ans   := copy w
      infm  := inverseIntegralMatrixAtInfinity()
      mhat  := zero(rank(), rank())$Matrix(RF)
      ii    := minIndex w - minRowIndex mhat
      repeat
        m := coordinates(ans) * infm
        r := [rfmonom repOrder(m, i)
                     for i in minRowIndex m .. maxRowIndex m]$Vector(RF)
        for i in minRowIndex m .. maxRowIndex m repeat
          for j in minColIndex m .. maxColIndex m repeat
            qsetelt_!(mhat, i, j, qelt(r, i + ii) * qelt(m, i, j))
        sol := first nullSpace transpose map(infValue,
                mhat)$MatrixCategoryFunctions2(RF, Vector RF, Vector RF,
                             Matrix RF, Q, Vector Q, Vector Q, Matrix Q)
        (pr := kmin(m, sol)) case "failed" => return ans
        qsetelt_!(ans, pr.pos,
         +/[Q2RF(qelt(sol, i)) * rfmonom(repOrder(m, i - ii) - pr.km)
                  * qelt(ans, i) for i in minIndex sol .. maxIndex sol])

    integral?(f:$, p:UP) ==
      (r:=retractIfCan(p)@Union(F,"failed")) case F => integral?(f,r::F)
      (integralCoordinates(f).den exquo p) case "failed"

    differentiate(f:$, d:UP -> UP) ==
      differentiate(f, x +-> differentiate(x, d)$RF)