This file is indexed.

/usr/share/axiom-20170501/src/algebra/FFCGP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
)abbrev domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated: 31 March 1991
++ References:
++ Grab92 Finite Fields in Axiom
++ Lidl83 Finite Field, Encyclopedia of Mathematics and Its Applications
++ Description:
++ FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol)  implements a
++ finite extension field of the ground field GF. Its elements are
++ represented by powers of a primitive element, a generator of the
++ multiplicative (cyclic) group. As primitive
++ element we choose the root of the extension polynomial defpol,
++ which MUST be primitive (user responsibility). Zech logarithms are stored
++ in a table of size half of the field size, and use \spadtype{SingleInteger}
++ for representing field elements, hence, there are restrictions
++ on the size of the field.

FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol) : SIG == CODE where
  GF    : FiniteFieldCategory                -- the ground field
  defpol: SparseUnivariatePolynomial GF      -- the extension polynomial
  -- the root of defpol is used as the primitive element

  PI  ==> PositiveInteger
  NNI ==> NonNegativeInteger
  I   ==> Integer
  SI  ==> SingleInteger
  SUP ==> SparseUnivariatePolynomial
  SAE ==> SimpleAlgebraicExtension(GF,SUP GF,defpol)
  V   ==> Vector GF
  FFP ==> FiniteFieldExtensionByPolynomial(GF,defpol)
  FFF ==> FiniteFieldFunctions(GF)
  OUT ==> OutputForm
  ARR ==> PrimitiveArray(SI)
  TBL ==> Table(PI,NNI)

  SIG ==> FiniteAlgebraicExtensionField(GF)  with

    getZechTable : () -> ARR
      ++ getZechTable() returns the zech logarithm table of the field
      ++ it is used to perform additions in the field quickly.

  CODE ==> add

-- global variables ===================================================

    Rep:= SI
    -- elements are represented by small integers in the range
    -- (-1)..(size()-2). The (-1) representing the field element zero,
    -- the other small integers representing the corresponding power
    -- of the primitive element, the root of the defining polynomial

    -- it would be very nice if we could use the representation
    -- Rep:= Union("zero", IntegerMod(size()$GF ** degree(defpol) -1)),
    -- why doesn't the compiler like this ?

    extdeg:NNI  :=degree(defpol)$(SUP GF)::NNI
    -- the extension degree

    sizeFF:NNI:=(size()$GF ** extdeg) pretend NNI
    -- the size of the field

    if sizeFF > 2**20 then
      error "field too large for this representation"

    sizeCG:SI:=(sizeFF - 1) pretend SI
    -- the order of the cyclic group

    sizeFG:SI:=(sizeCG quo (size()$GF-1)) pretend SI
    -- the order of the factor group

    zechlog:ARR:=new(((sizeFF+1) quo 2)::NNI,-1::SI)$ARR
    -- the table for the zech logarithm

    alpha :=new()$Symbol :: OutputForm
    -- get a new symbol for the output representation of
    -- the elements

    primEltGF:GF:=
      odd?(extdeg)$I => -$GF coefficient(defpol,0)$(SUP GF)
      coefficient(defpol,0)$(SUP GF)
    -- the corresponding primitive element of the groundfield
    -- equals the trace of the primitive element w.r.t. the groundfield

    facOfGroupSize := nil()$(List Record(factor:Integer,exponent:Integer))
    -- the factorization of sizeCG

    initzech?:Boolean:=true
    -- gets false after initialization of the zech logarithm array

    initelt?:Boolean:=true
    -- gets false after initialization of the normal element

    normalElt:SI:=0
    -- the global variable containing a normal element

-- functions ==========================================================

    -- for completeness we have to give a dummy implementation for
    -- 'tableForDiscreteLogarithm', although this function is not
    -- necessary in the cyclic group representation case

    tableForDiscreteLogarithm(fac) == table()$TBL

    getZechTable() == zechlog

    initializeZech:() -> Void

    initializeElt: () -> Void

    order(x:$):PI ==
      zero?(x) =>
        error"order: order of zero undefined"
      (sizeCG quo gcd(sizeCG,x pretend NNI))::PI

    primitive?(x:$) ==
      zero?(x) or (x = 1) => false
      gcd(x::Rep,sizeCG)$Rep = 1$Rep => true
      false

    coordinates(x:$) ==
      x=0 => new(extdeg,0)$(Vector GF)
      primElement:SAE:=convert(monomial(1,1)$(SUP GF))$SAE
      -- the primitive element in the corresponding algebraic extension
      coordinates(primElement **$SAE (x pretend SI))$SAE

    x:$ + y:$ ==
      if initzech? then initializeZech()
      zero? x => y
      zero? y => x
      d:Rep:=positiveRemainder(y -$Rep x,sizeCG)$Rep
      (d pretend SI) <= shift(sizeCG,-$SI (1$SI)) =>
        zechlog.(d pretend SI) =$SI -1::SI => 0
        addmod(x,zechlog.(d pretend SI) pretend Rep,sizeCG)$Rep
      --d:Rep:=positiveRemainder(x -$Rep y,sizeCG)$Rep
      d:Rep:=(sizeCG -$SI d)::Rep
      addmod(y,zechlog.(d pretend SI) pretend Rep,sizeCG)$Rep
      --positiveRemainder(x +$Rep zechlog.(d pretend SI) -$Rep d,sizeCG)$Rep

    initializeZech() ==
      zechlog:=createZechTable(defpol)$FFF
      -- set initialization flag
      initzech? := false
      void()$Void

    basis(n:PI) ==
      extensionDegree() rem n ^= 0 =>
        error("argument must divide extension degree")
      m:=sizeCG quo (size()$GF**n-1)
      [index((1+i*m) ::PI) for i in 0..(n-1)]::Vector $

    n:I * x:$ == ((n::GF)::$) * x

    minimalPolynomial(a) ==
      f:SUP $:=monomial(1,1)$(SUP $) - monomial(a,0)$(SUP $)
      u:$:=Frobenius(a)
      while not(u = a) repeat
        f:=f * (monomial(1,1)$(SUP $) - monomial(u,0)$(SUP $))
        u:=Frobenius(u)
      p:SUP GF:=0$(SUP GF)
      while not zero?(f)$(SUP $) repeat
        g:GF:=retract(leadingCoefficient(f)$(SUP $))
        p:=p+monomial(g,_
                      degree(f)$(SUP $))$(SUP GF)
        f:=reductum(f)$(SUP $)
      p

    factorsOfCyclicGroupSize() ==
      if empty? facOfGroupSize then initializeElt()
      facOfGroupSize

    representationType() == "cyclic"

    definingPolynomial() == defpol

    random() ==
      positiveRemainder(random()$Rep,sizeFF pretend Rep)$Rep -$Rep 1$Rep

    represents(v) ==
      u:FFP:=represents(v)$FFP
      u =$FFP 0$FFP => 0
      discreteLog(u)$FFP pretend Rep

    coerce(e:GF):$ ==
      zero?(e)$GF => 0
      log:I:=discreteLog(primEltGF,e)$GF::NNI *$I sizeFG
      -- version before 10.20.92: log pretend Rep
      -- 1$GF is coerced to sizeCG pretend Rep by old version
      -- now 1$GF is coerced to 0$Rep which is correct.
      positiveRemainder(log,sizeCG) pretend Rep

    retractIfCan(x:$) ==
      zero? x => 0$GF
      u:= (x::Rep) exquo$Rep (sizeFG pretend Rep)
      u = "failed" => "failed"
      primEltGF **$GF ((u::$) pretend SI)

    retract(x:$) ==
      a:=retractIfCan(x)
      a="failed" => error "element not in groundfield"
      a :: GF

    basis() == [index(i :: PI) for i in 1..extdeg]::Vector $

    inGroundField?(x) ==
      zero? x=> true
      positiveRemainder(x::Rep,sizeFG pretend Rep)$Rep =$Rep 0$Rep => true
      false

    discreteLog(b:$,x:$) ==
      zero? x => "failed"
      e:= extendedEuclidean(b,sizeCG,x)$Rep
      e = "failed" => "failed"
      e1:Record(coef1:$,coef2:$) := e :: Record(coef1:$,coef2:$)
      positiveRemainder(e1.coef1,sizeCG)$Rep pretend NNI

    - x:$ ==
        zero? x => 0
        characteristic() =$I 2 => x
        addmod(x,shift(sizeCG,-1)$SI pretend Rep,sizeCG)

    generator() == 1$SI
    createPrimitiveElement() == 1$SI
    primitiveElement() == 1$SI

    discreteLog(x:$) ==
      zero? x => error "discrete logarithm error"
      x pretend NNI

    normalElement() ==
      if initelt? then initializeElt()
      normalElt::$

    initializeElt() ==
      facOfGroupSize := factors(factor(sizeCG)$Integer)
      normalElt:=createNormalElement() pretend SI
      initelt?:=false
      void()$Void

    extensionDegree() == extdeg pretend PI

    characteristic() == characteristic()$GF

    lookup(x:$) ==
      x =$Rep (-$Rep 1$Rep) => sizeFF pretend PI
      (x +$Rep 1$Rep) pretend PI

    index(a:PI) ==
      positiveRemainder(a,sizeFF)$I pretend Rep -$Rep 1$Rep

    0 == (-$Rep 1$Rep)

    1 == 0$Rep

-- to get a "exponent like" output form
    coerce(x:$):OUT ==
      x =$Rep (-$Rep 1$Rep) => "0"::OUT
      x =$Rep 0$Rep => "1"::OUT
      y:I:=lookup(x)-1
      alpha **$OUT (y::OUT)

    x:$ = y:$ ==  x =$Rep y

    x:$ * y:$ ==
      x = 0 => 0
      y = 0 => 0
      addmod(x,y,sizeCG)$Rep

    a:GF * x:$ == coerce(a)@$ * x

    x:$/a:GF == x/coerce(a)@$

    inv(x:$)  ==
      zero?(x) => error "inv: not invertible"
      (x = 1) => 1
      sizeCG -$Rep x

    x:$ ** n:PI == x ** n::I

    x:$ ** n:NNI == x ** n::I

    x:$ ** n:I ==
      m:Rep:=positiveRemainder(n,sizeCG)$I pretend Rep
      m =$Rep 0$Rep => 1
      x = 0 => 0
      mulmod(m,x,sizeCG::Rep)$Rep