This file is indexed.

/usr/share/axiom-20170501/src/algebra/FFF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
)abbrev package FFF FiniteFieldFunctions
++ Author: J. Grabmeier, A. Scheerhorn
++ Date Created: 21 March 1991
++ Date Last Updated: 31 March 1991
++ References:
++ Grab92 Finite Fields in Axiom
++ Lidl83 Finite Field, Encyclopedia of Mathematics and Its Applications
++ Description:
++ FiniteFieldFunctions(GF) is a package with functions
++ concerning finite extension fields of the finite ground field GF,
++ for example, Zech logarithms.

FiniteFieldFunctions(GF) : SIG == CODE where
  GF : FiniteFieldCategory  -- the ground field

  PI   ==> PositiveInteger
  NNI  ==> NonNegativeInteger
  I    ==> Integer
  SI   ==> SingleInteger
  SUP  ==> SparseUnivariatePolynomial GF
  V    ==> Vector
  M    ==> Matrix
  L    ==> List
  OUT  ==> OutputForm
  SAE  ==> SimpleAlgebraicExtension
  ARR  ==> PrimitiveArray(SI)
  TERM ==> Record(value:GF,index:SI)
  MM   ==> ModMonic(GF,SUP)
  PF   ==> PrimeField

  SIG ==> with

    createZechTable : SUP -> ARR
      ++ createZechTable(f) generates a Zech logarithm table for the cyclic
      ++ group representation of a extension of the ground field by the
      ++ primitive polynomial f(x), \spad{Z(i)},
      ++ defined by x**Z(i) = 1+x**i is stored at index i.
      ++ This is needed in particular
      ++ to perform addition of field elements in finite fields represented
      ++ in this way. See \spadtype{FFCGP}, \spadtype{FFCGX}.

    createMultiplicationTable : SUP -> V L TERM
      ++ createMultiplicationTable(f) generates a multiplication
      ++ table for the normal basis of the field extension determined
      ++ by f. This is needed to perform multiplications
      ++ between elements represented as coordinate vectors to this basis.
      ++ See \spadtype{FFNBP}, \spadtype{FFNBX}.

    createMultiplicationMatrix : V L TERM -> M GF
      ++ createMultiplicationMatrix(m) forms the multiplication table
      ++ m into a matrix over the ground field.
      -- only useful for the user to visualise the multiplication table
      -- in a nice form

    sizeMultiplication : V L TERM -> NNI
      ++ sizeMultiplication(m) returns the number of entries
      ++ of the multiplication table m.
      -- the time of the multiplication of field elements depends
      -- on this size

    createLowComplexityTable : PI -> Union(Vector List TERM,"failed")
      ++ createLowComplexityTable(n) tries to find
      ++ a low complexity normal basis of degree n over GF
      ++ and returns its multiplication matrix
      ++ Fails, if it does not find a low complexity basis

    createLowComplexityNormalBasis : PI -> Union(SUP, V L TERM)
      ++ createLowComplexityNormalBasis(n) tries to find a
      ++ a low complexity normal basis of degree n over GF
      ++ and returns its multiplication matrix
      ++ If no low complexity basis is found it calls
      ++ \axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(n) 
      ++ to produce a normal polynomial of degree n over GF

  CODE ==> add

    createLowComplexityNormalBasis(n) ==
      (u:=createLowComplexityTable(n)) case "failed" =>
        createNormalPoly(n)$FiniteFieldPolynomialPackage(GF)
      u::(V L TERM)

-- try to find a low complexity normal basis multiplication table
-- of the field of extension degree n
-- the algorithm is from:
-- Wassermann A., Konstruktion von Normalbasen,
-- Bayreuther Mathematische Schriften 31 (1989),1-9.

    createLowComplexityTable(n) ==
      q:=size()$GF
      -- this algorithm works only for prime fields
      p:=characteristic()$GF
      -- search of a suitable parameter k
      k:NNI:=0
      for i in 1..n-1  while (k=0) repeat
        if prime?(i*n+1) and not(p = (i*n+1)) then
          primitive?(q::PF(i*n+1))$PF(i*n+1) =>
              a:NNI:=1
              k:=i
              t1:PF(k*n+1):=(q::PF(k*n+1))**n
          gcd(n,a:=discreteLog(q::PF(n*i+1))$PF(n*i+1))$I = 1 =>
              k:=i
              t1:=primitiveElement()$PF(k*n+1)**n
      k = 0 => "failed"
      -- initialize some start values
      multmat:M PF(p):=zero(n,n)
      p1:=(k*n+1)
      pkn:=q::PF(p1)
      t:=t1 pretend PF(p1)
      if odd?(k) then
          jt:I:=(n quo 2)+1
          vt:I:=positiveRemainder((k-a) quo 2,k)+1
        else
          jt:I:=1
          vt:I:=(k quo 2)+1
      -- compute matrix
      vec:Vector I:=zero(p1 pretend NNI)
      for x in 1..k repeat
        for l in 1..n repeat
          vec.((t**(x-1) * pkn**(l-1)) pretend Integer+1):=_
                                            positiveRemainder(l,p1)
      lvj:M I:=zero(k::NNI,n)
      for v in 1..k repeat
        for j in 1..n repeat
          if (j^=jt) or (v^=vt) then
            help:PF(p1):=t**(v-1)*pkn**(j-1)+1@PF(p1)
            setelt(lvj,v,j,vec.(help pretend I +1))
      for j in 1..n repeat
        if j^=jt then
          for v in 1..k repeat
            lvjh:=elt(lvj,v,j)
            setelt(multmat,j,lvjh,elt(multmat,j,lvjh)+1)
      for i in 1..n repeat
        setelt(multmat,jt,i,positiveRemainder(-k,p)::PF(p))
      for v in 1..k repeat
        if v^=vt then
          lvjh:=elt(lvj,v,jt)
          setelt(multmat,jt,lvjh,elt(multmat,jt,lvjh)+1)
      -- multmat
      m:=nrows(multmat)$(M PF(p))
      multtable:V L TERM:=new(m,nil()$(L TERM))$(V L TERM)
      for i in 1..m repeat
        l:L TERM:=nil()$(L TERM)
        v:V PF(p):=row(multmat,i)
        for j in (1::I)..(m::I) repeat
          if (v.j ^= 0) then
            -- take -v.j to get trace 1 instead of -1
            term:TERM:=[(convert(-v.j)@I)::GF,(j-2) pretend SI]$TERM
            l:=cons(term,l)$(L TERM)
        qsetelt_!(multtable,i,copy l)$(V L TERM)
      multtable

    sizeMultiplication(m) ==
      s:NNI:=0
      for i in 1..#m repeat
        s := s + #(m.i)
      s

    createMultiplicationTable(f:SUP) ==
      sizeGF:NNI:=size()$GF -- the size of the ground field
      m:PI:=degree(f)$SUP pretend PI
      m=1 =>
        [[[-coefficient(f,0)$SUP,(-1)::SI]$TERM]$(L TERM)]::(V L TERM)
      m1:I:=m-1
      -- initialize basis change matrices
      setPoly(f)$MM
      e:=reduce(monomial(1,1)$SUP)$MM ** sizeGF
      w:=1$MM
      qpow:PrimitiveArray(MM):=new(m,0)
      qpow.0:=1$MM
      for i in 1..m1 repeat
        qpow.i:=(w:=w*e)
      -- qpow.i = x**(i*q)
      qexp:PrimitiveArray(MM):=new(m,0)
      qexp.0:=reduce(monomial(1,1)$SUP)$MM
      mat:M GF:=zero(m,m)$(M GF)
      qsetelt_!(mat,2,1,1$GF)$(M GF)
      h:=qpow.1
      qexp.1:=h
      setColumn_!(mat,2,Vectorise(h)$MM)$(M GF)
      for i in 2..m1 repeat
        g:=0$MM
        while h ^= 0 repeat
          g:=g + leadingCoefficient(h) * qpow.degree(h)$MM
          h:=reductum(h)$MM
        qexp.i:=g
        setColumn_!(mat,i+1,Vectorise(h:=g)$MM)$(M GF)
      -- loop invariant: qexp.i = x**(q**i)
      mat1:=inverse(mat)$(M GF)
      mat1 = "failed" =>
        error "createMultiplicationTable: polynomial must be normal"
      mat:=mat1 :: (M GF)
      -- initialize multiplication table
      multtable:V L TERM:=new(m,nil()$(L TERM))$(V L TERM)
      for i in 1..m repeat
        l:L TERM:=nil()$(L TERM)
        v:V GF:=mat *$(M GF) Vectorise(qexp.(i-1) *$MM qexp.0)$MM
        for j in (1::SI)..(m::SI) repeat
          if (v.j ^= 0$GF) then
            term:TERM:=[(v.j),j-(2::SI)]$TERM
            l:=cons(term,l)$(L TERM)
        qsetelt_!(multtable,i,copy l)$(V L TERM)
      multtable


    createZechTable(f:SUP) ==
      sizeGF:NNI:=size()$GF -- the size of the ground field
      m:=degree(f)$SUP::PI
      qm1:SI:=(sizeGF ** m -1) pretend SI
      zechlog:ARR:=new(((sizeGF ** m + 1) quo 2)::NNI,-1::SI)$ARR
      helparr:ARR:=new(sizeGF ** m::NNI,0$SI)$ARR
      primElement:=reduce(monomial(1,1)$SUP)$SAE(GF,SUP,f)
      a:=primElement
      for i in 1..qm1-1 repeat
        helparr.(lookup(a -$SAE(GF,SUP,f) 1$SAE(GF,SUP,f)_
           )$SAE(GF,SUP,f)):=i::SI
        a:=a * primElement
      characteristic() = 2 =>
        a:=primElement
        for i in 1..(qm1 quo 2) repeat
          zechlog.i:=helparr.lookup(a)$SAE(GF,SUP,f)
          a:=a * primElement
        zechlog
      a:=1$SAE(GF,SUP,f)
      for i in 0..((qm1-2) quo 2) repeat
        zechlog.i:=helparr.lookup(a)$SAE(GF,SUP,f)
        a:=a * primElement
      zechlog

    createMultiplicationMatrix(m) ==
      n:NNI:=#m
      mat:M GF:=zero(n,n)$(M GF)
      for i in 1..n repeat
        for t in m.i repeat
          qsetelt_!(mat,i,t.index+2,t.value)
      mat