This file is indexed.

/usr/share/axiom-20170501/src/algebra/FFHOM.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
)abbrev package FFHOM FiniteFieldHomomorphisms
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ References:
++ Grab92 Finite Fields in Axiom
++ Lidl83 Finite Field, Encyclopedia of Mathematics and Its Applications
++ Description:
++ FiniteFieldHomomorphisms(F1,GF,F2) exports coercion functions of
++ elements between the fields F1 and F2, which both must be
++ finite simple algebraic extensions of the finite ground field GF.

FiniteFieldHomomorphisms(F1,GF,F2) : SIG == CODE where
  F1 : FiniteAlgebraicExtensionField(GF)
  GF : FiniteFieldCategory
  F2 : FiniteAlgebraicExtensionField(GF)
  -- the homorphism can only convert elements w.r.t. the last extension .
  -- Adding a function 'groundField()' which returns the groundfield of GF
  -- as a variable of type FiniteFieldCategory in the new compiler, one
  -- could build up 'convert' recursively to get an homomorphism w.r.t
  -- the whole extension.
 
  I   ==> Integer
  NNI ==> NonNegativeInteger
  SI  ==> SingleInteger
  PI  ==> PositiveInteger
  SUP ==> SparseUnivariatePolynomial
  M   ==> Matrix GF
  FFP ==> FiniteFieldExtensionByPolynomial
  FFPOL2 ==> FiniteFieldPolynomialPackage2
  FFPOLY ==> FiniteFieldPolynomialPackage
  OUT ==> OutputForm
 
  SIG ==> with
 
    coerce : F1 -> F2
      ++ coerce(x) is the homomorphic image of x from
      ++ F1 in F2. Thus coerce is a
      ++ field homomorphism between the fields extensions
      ++ F1 and F2 both over ground field GF 
      ++ (the second argument to the package).
      ++ Error: if the extension degree of F1 doesn't divide
      ++ the extension degree of F2.
      ++ Note that the other coercion function in the 
      ++ \spadtype{FiniteFieldHomomorphisms} is a left inverse.
 
    coerce : F2 -> F1
      ++ coerce(x) is the homomorphic image of x from
      ++ F2 in F1, where coerce is a
      ++ field homomorphism between the fields extensions
      ++ F2 and F1 both over ground field GF
      ++ (the second argument to the package).
      ++ Error: if the extension degree of F2 doesn't divide
      ++ the extension degree of F1.
      ++ Note that the other coercion function in the 
      ++ \spadtype{FiniteFieldHomomorphisms} is a left inverse.
    -- coerce(coerce(x:F1)@F2)@F1 = x and coerce(coerce(y:F2)@F1)@F2 = y
 
  CODE ==> add
 
-- global variables ===================================================
 
    degree1:NNI:= extensionDegree()$F1
    degree2:NNI:= extensionDegree()$F2
    -- the degrees of the last extension
 
    -- a necessary condition for the one field being an subfield of
    -- the other one is, that the respective extension degrees are
    -- multiples
    if max(degree1,degree2) rem min(degree1,degree2) ^= 0 then
      error "FFHOM: one extension degree must divide the other one"
 
    conMat1to2:M:= zero(degree2,degree1)$M
    -- conversion Matix for the conversion direction F1 -> F2
    conMat2to1:M:= zero(degree1,degree2)$M
    -- conversion Matix for the conversion direction F2 -> F1
 
    repType1:=representationType()$F1
    repType2:=representationType()$F2
    -- the representation types of the fields
 
    init?:Boolean:=true
    -- gets false after initialization
 
    defPol1:=definingPolynomial()$F1
    defPol2:=definingPolynomial()$F2
    -- the defining polynomials of the fields
 
-- functions ==========================================================
 
    compare: (SUP GF,SUP GF) -> Boolean
    -- compares two polynomials
 
    convertWRTsameDefPol12: F1  ->  F2
    convertWRTsameDefPol21: F2  ->  F1
    -- homomorphism if the last extension of F1 and F2 was build up
    -- using the same defining polynomials
 
    convertWRTdifferentDefPol12: F1  ->  F2
    convertWRTdifferentDefPol21: F2  ->  F1
    -- homomorphism if the last extension of F1 and F2 was build up
    -- with different defining polynomials
 
    initialize: () -> Void
    -- computes the conversion matrices
 
    compare(g:(SUP GF),f:(SUP GF)) ==
      degree(f)$(SUP GF)  >$NNI degree(g)$(SUP GF) => true
      degree(f)$(SUP GF) <$NNI degree(g)$(SUP GF) => false
      equal:Integer:=0
      for i in degree(f)$(SUP GF)..0 by -1 while equal=0 repeat
        not zero?(coefficient(f,i)$(SUP GF))$GF and _
             zero?(coefficient(g,i)$(SUP GF))$GF => equal:=1
        not zero?(coefficient(g,i)$(SUP GF))$GF and _
             zero?(coefficient(f,i)$(SUP GF))$GF => equal:=(-1)
        (f1:=lookup(coefficient(f,i)$(SUP GF))$GF) >$PositiveInteger _
         (g1:=lookup(coefficient(g,i)$(SUP GF))$GF) =>  equal:=1
        f1 <$PositiveInteger g1 => equal:=(-1)
      equal=1 => true
      false
 
    initialize() ==
      -- 1) in the case of equal def. polynomials initialize is called only
      -- if one of the rep. types is "normal" and the other one is "polynomial"
      --  we have to compute the basis change matrix 'mat', which i-th
      --  column are the coordinates of a**(q**i), the i-th component of
      --  the normal basis ('a' the root of the def. polynomial and q the
      --  size of the groundfield)
      defPol1 =$(SUP GF) defPol2 =>
        -- new code using reducedQPowers
        mat:=zero(degree1,degree1)$M
        arr:=reducedQPowers(defPol1)$FFPOLY(GF)
        for i in 1..degree1 repeat
          setColumn_!(mat,i,vectorise(arr.(i-1),degree1)$SUP(GF))$M
          -- old code
          -- here one of the representation types must be "normal"
          --a:=basis()$FFP(GF,defPol1).2  -- the root of the def. polynomial
          --setColumn_!(mat,1,coordinates(a)$FFP(GF,defPol1))$M
          --for i in 2..degree1 repeat
          --  a:= a **$FFP(GF,defPol1) size()$GF
          --  setColumn_!(mat,i,coordinates(a)$FFP(GF,defPol1))$M
          --for the direction "normal" -> "polynomial" we have to multiply the
          -- coordinate vector of an element of the normal basis field with
          -- the matrix 'mat'. In this case 'mat' is the correct conversion
          -- matrix for the conversion of F1 to F2, its inverse the correct
          -- inversion matrix for the conversion of F2 to F1
        repType1 = "normal" =>  -- repType2 = "polynomial"
          conMat1to2:=copy(mat)
          conMat2to1:=copy(inverse(mat)$M :: M)
          --finish the function for one case, hence reset initialization flag
          init? := false
          void()$Void
          -- print("'normal' <=> 'polynomial' matrices initialized"::OUT)
        -- in the other case we have to change the matrices
        -- repType2 = "normal" and repType1 = "polynomial"
        conMat2to1:=copy(mat)
        conMat1to2:=copy(inverse(mat)$M :: M)
        -- print("'normal' <=> 'polynomial' matrices initialized"::OUT)
        --we finish the function for one case, hence reset initialization flag
        init? := false
        void()$Void
      -- 2) in the case of different def. polynomials we have to order the
      --    fields to get the same isomorphism, if the package is called with
      --    the fields F1 and F2 swapped.
      dPbig:= defPol2
      rTbig:= repType2
      dPsmall:= defPol1
      rTsmall:= repType1
      degbig:=degree2
      degsmall:=degree1
      if compare(defPol2,defPol1) then
        degsmall:=degree2
        degbig:=degree1
        dPbig:= defPol1
        rTbig:= repType1
        dPsmall:= defPol2
        rTsmall:= repType2
      -- 3) in every case we need a conversion between the polynomial
      --  represented fields. Therefore we compute 'root' as a root of the
      --  'smaller' def. polynomial in the 'bigger' field.
      --  We compute the matrix 'matsb', which i-th column are the coordinates
      --  of the (i-1)-th power of root, i=1..degsmall. Multiplying a
      --  coordinate vector of an element of the 'smaller' field by this
      --  matrix, we got the coordinates of the corresponding element in the
      --  'bigger' field.
      -- compute the root of dPsmall in the 'big' field
      root:=rootOfIrreduciblePoly(dPsmall)$FFPOL2(FFP(GF,dPbig),GF)
      -- set up matrix for polynomial conversion
      matsb:=zero(degbig,degsmall)$M
      qsetelt_!(matsb,1,1,1$GF)$M
      a:=root
      for i in 2..degsmall repeat
        setColumn_!(matsb,i,coordinates(a)$FFP(GF,dPbig))$M
        a := a *$FFP(GF,dPbig) root
      --  the conversion from 'big' to 'small': we can't invert matsb
      --  directly, because it has degbig rows and degsmall columns and
      --  may be no square matrix. Therfore we construct a square matrix
      --  mat from degsmall linear independent rows of matsb and invert it.
      --  Now we get the conversion matrix 'matbs' for the conversion from
      --  'big' to 'small' by putting the columns of mat at the indices
      --  of the linear independent rows of matsb to columns of matbs.
      ra:I:=1   -- the rank
      mat:M:=transpose(row(matsb,1))$M -- has already rank 1
      rowind:I:=2
      iVec:Vector I:=new(degsmall,1$I)$(Vector I)
      while ra < degsmall repeat
        if rank(vertConcat(mat,transpose(row(matsb,rowind))$M)$M)$M > ra then
          mat:=vertConcat(mat,transpose(row(matsb,rowind))$M)$M
          ra:=ra+1
          iVec.ra := rowind
        rowind:=rowind + 1
      mat:=inverse(mat)$M :: M
      matbs:=zero(degsmall,degbig)$M
      for i in 1..degsmall repeat
        setColumn_!(matbs,iVec.i,column(mat,i)$M)$M
      -- print(matsb::OUT)
      -- print(matbs::OUT)
      -- 4) if the 'bigger' field is "normal" we have to compose the
      --  polynomial conversion with a conversion from polynomial to normal
      --  between the FFP(GF,dPbig) and FFNBP(GF,dPbig) the 'bigger'
      --  field. Therefore we compute a conversion matrix 'mat' as in 1)
      --  Multiplying with the inverse of 'mat' yields the desired
      --  conversion from polynomial to normal. Multiplying this matrix by
      --  the above computed 'matsb' we got the matrix for converting form
      --  'small polynomial' to 'big normal'.
      -- set up matrix 'mat' for polynomial to normal
      if rTbig = "normal" then
        arr:=reducedQPowers(dPbig)$FFPOLY(GF)
        mat:=zero(degbig,degbig)$M
        for i in 1..degbig repeat
          setColumn_!(mat,i,vectorise(arr.(i-1),degbig)$SUP(GF))$M
        -- old code
        --a:=basis()$FFP(GF,dPbig).2  -- the root of the def.Polynomial
        --setColumn_!(mat,1,coordinates(a)$FFP(GF,dPbig))$M
        --for i in 2..degbig repeat
        --  a:= a **$FFP(GF,dPbig) size()$GF
        --  setColumn_!(mat,i,coordinates(a)$FFP(GF,dPbig))$M
        -- print(inverse(mat)$M::OUT)
        matsb:= (inverse(mat)$M :: M) * matsb
        -- print("inv *.."::OUT)
        matbs:=matbs * mat
        -- 5) if the 'smaller' field is "normal" we have first to convert
        --    from 'small normal' to 'small polynomial', that is from
        --    FFNBP(GF,dPsmall) to FFP(GF,dPsmall). Therefore we compute a
        --    conversion matrix 'mat' as in 1). Multiplying with  'mat'
        --    yields the desired conversion from normal to polynomial.
        --    Multiplying the above computed 'matsb' with 'mat' we got the
        --    matrix for converting form 'small normal' to 'big normal'.
      -- set up matrix 'mat' for normal to polynomial
      if rTsmall = "normal" then
        arr:=reducedQPowers(dPsmall)$FFPOLY(GF)
        mat:=zero(degsmall,degsmall)$M
        for i in 1..degsmall repeat
          setColumn_!(mat,i,vectorise(arr.(i-1),degsmall)$SUP(GF))$M
      -- old code
      --b:FFP(GF,dPsmall):=basis()$FFP(GF,dPsmall).2
      --setColumn_!(mat,1,coordinates(b)$FFP(GF,dPsmall))$M
      --for i in 2..degsmall repeat
      --  b:= b **$FFP(GF,dPsmall) size()$GF
      --  setColumn_!(mat,i,coordinates(b)$FFP(GF,dPsmall))$M
        -- print(mat::OUT)
        matsb:= matsb * mat
        matbs:= (inverse(mat) :: M) * matbs
      -- now 'matsb' is the corret conversion matrix for 'small' to 'big'
      -- and 'matbs' the corret one for 'big' to 'small'.
      -- depending on the above ordering the conversion matrices are
      -- initialized
      dPbig =$(SUP GF) defPol2 =>
        conMat1to2 :=matsb
        conMat2to1 :=matbs
        -- print(conMat1to2::OUT)
        -- print(conMat2to1::OUT)
        -- print("conversion matrices initialized"::OUT)
        --we finish the function for one case, hence reset initialization flag
        init? := false
        void()$Void
      conMat1to2 :=matbs
      conMat2to1 :=matsb
      -- print(conMat1to2::OUT)
      -- print(conMat2to1::OUT)
      -- print("conversion matrices initialized"::OUT)
      --we finish the function for one case, hence reset initialization flag
      init? := false
      void()$Void
      
    coerce(x:F1) ==
      inGroundField?(x)$F1 => retract(x)$F1 :: F2
      -- if x is already in GF then we can use a simple coercion
      defPol1 =$(SUP GF) defPol2 => convertWRTsameDefPol12(x)
      convertWRTdifferentDefPol12(x)
 
    convertWRTsameDefPol12(x:F1)  ==
      repType1 = repType2 => x pretend F2
      -- same groundfields, same defining polynomials, same
      -- representation types --> F1 = F2, x is already in F2
      repType1 = "cyclic" =>
        x = 0$F1 => 0$F2
      -- the SI corresponding to the cyclic representation is the exponent of
      -- the primitiveElement, therefore we exponentiate the primitiveElement
      -- of F2 by it.
        primitiveElement()$F2 **$F2 (x pretend SI)
      repType2 = "cyclic" =>
        x = 0$F1 => 0$F2
      -- to get the exponent, we have to take the discrete logarithm of the
      -- element in the given field.
        (discreteLog(x)$F1 pretend SI) pretend F2
      -- here one of the representation types is "normal"
      if init? then initialize()
      -- here a conversion matrix is necessary, (see initialize())
      represents(conMat1to2 *$(Matrix GF) coordinates(x)$F1)$F2
 
    convertWRTdifferentDefPol12(x:F1) ==
      if init? then initialize()
      -- if we want to convert into a 'smaller' field, we have to test,
      -- whether the element is in the subfield of the 'bigger' field, which
      -- corresponds to the 'smaller' field
      if degree1 > degree2 then
        if positiveRemainder(degree2,degree(x)$F1)^= 0 then
          error "coerce: element doesn't belong to smaller field"
      represents(conMat1to2 *$(Matrix GF) coordinates(x)$F1)$F2
 
-- the three functions below equal the three functions above up to
-- '1' exchanged by '2' in all domain and variable names
 
    coerce(x:F2) ==
      inGroundField?(x)$F2 => retract(x)$F2 :: F1
      -- if x is already in GF then we can use a simple coercion
      defPol1 =$(SUP GF) defPol2 => convertWRTsameDefPol21(x)
      convertWRTdifferentDefPol21(x)
 
    convertWRTsameDefPol21(x:F2)  ==
      repType1 = repType2 => x pretend F1
      -- same groundfields, same defining polynomials,
      -- same representation types --> F1 = F2, that is:
      -- x is already in F1
      repType2 = "cyclic" =>
        x = 0$F2 => 0$F1
        primitiveElement()$F1 **$F1 (x pretend SI)
      repType1 = "cyclic" =>
        x = 0$F2 => 0$F1
        (discreteLog(x)$F2 pretend SI) pretend F1
      -- here one of the representation types is "normal"
      if init? then initialize()
      represents(conMat2to1 *$(Matrix GF) coordinates(x)$F2)$F1
 
    convertWRTdifferentDefPol21(x:F2) ==
      if init? then initialize()
      if degree2 > degree1 then
        if positiveRemainder(degree1,degree(x)$F2)^= 0 then
          error "coerce: element doesn't belong to smaller field"
      represents(conMat2to1 *$(Matrix GF) coordinates(x)$F2)$F1