/usr/share/axiom-20170501/src/algebra/FINAALG.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 | )abbrev category FINAALG FiniteRankNonAssociativeAlgebra
++ Author: J. Grabmeier, R. Wisbauer
++ Date Created: 01 March 1991
++ Date Last Updated: 12 June 1991
++ References:
++ R.D. Schafer: An Introduction to Nonassociative Algebras
++ Academic Press, New York, 1966
++
++ R. Wisbauer: Bimodule Structure of Algebra
++ Lecture Notes Univ. Duesseldorf 1991
++ Description:
++ A FiniteRankNonAssociativeAlgebra is a non associative algebra over
++ a commutative ring R which is a free \spad{R}-module of finite rank.
FiniteRankNonAssociativeAlgebra(R) : Category == SIG where
R : CommutativeRing
SIG ==> NonAssociativeAlgebra R with
someBasis : () -> Vector %
++ someBasis() returns some \spad{R}-module basis.
rank : () -> PositiveInteger
++ rank() returns the rank of the algebra as \spad{R}-module.
conditionsForIdempotents : Vector % -> List Polynomial R
++ conditionsForIdempotents([v1,...,vn]) determines a complete list
++ of polynomial equations for the coefficients of idempotents
++ with respect to the \spad{R}-module basis \spad{v1},...,\spad{vn}.
structuralConstants : Vector % -> Vector Matrix R
++ structuralConstants([v1,v2,...,vm]) calculates the structural
++ constants \spad{[(gammaijk) for k in 1..m]} defined by
++ \spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},
++ where \spad{[v1,...,vm]} is an \spad{R}-module basis
++ of a subalgebra.
leftRegularRepresentation : (% , Vector %) -> Matrix R
++ leftRegularRepresentation(a,[v1,...,vn]) returns the matrix of
++ the linear map defined by left multiplication by \spad{a}
++ with respect to the \spad{R}-module basis \spad{[v1,...,vn]}.
rightRegularRepresentation : (% , Vector %) -> Matrix R
++ rightRegularRepresentation(a,[v1,...,vn]) returns the matrix of
++ the linear map defined by right multiplication by \spad{a}
++ with respect to the \spad{R}-module basis \spad{[v1,...,vn]}.
leftTrace : % -> R
++ leftTrace(a) returns the trace of the left regular representation
++ of \spad{a}.
rightTrace : % -> R
++ rightTrace(a) returns the trace of the right regular representation
++ of \spad{a}.
leftNorm : % -> R
++ leftNorm(a) returns the determinant of the left regular
++ representation of \spad{a}.
rightNorm : % -> R
++ rightNorm(a) returns the determinant of the right regular
++ representation of \spad{a}.
coordinates : (%, Vector %) -> Vector R
++ coordinates(a,[v1,...,vn]) returns the coordinates of \spad{a}
++ with respect to the \spad{R}-module basis \spad{v1},...,\spad{vn}.
coordinates : (Vector %, Vector %) -> Matrix R
++ coordinates([a1,...,am],[v1,...,vn]) returns a matrix whose
++ i-th row is formed by the coordinates of \spad{ai}
++ with respect to the \spad{R}-module basis \spad{v1},...,\spad{vn}.
represents : (Vector R, Vector %) -> %
++ represents([a1,...,am],[v1,...,vm]) returns the linear
++ combination \spad{a1*vm + ... + an*vm}.
leftDiscriminant : Vector % -> R
++ leftDiscriminant([v1,...,vn]) returns the determinant of the
++ \spad{n}-by-\spad{n} matrix whose element at the \spad{i}-th row
++ and \spad{j}-th column is given by the left trace of the product
++ \spad{vi*vj}. Note that this is the same as
++ \spad{determinant(leftTraceMatrix([v1,...,vn]))}.
rightDiscriminant : Vector % -> R
++ rightDiscriminant([v1,...,vn]) returns the determinant of the
++ \spad{n}-by-\spad{n} matrix whose element at the \spad{i}-th row
++ and \spad{j}-th column is given by the right trace of the product
++ \spad{vi*vj}. Note that this is the same as
++ \spad{determinant(rightTraceMatrix([v1,...,vn]))}.
leftTraceMatrix : Vector % -> Matrix R
++ leftTraceMatrix([v1,...,vn]) is the \spad{n}-by-\spad{n} matrix
++ whose element at the \spad{i}-th row and \spad{j}-th column is given
++ by the left trace of the product \spad{vi*vj}.
rightTraceMatrix : Vector % -> Matrix R
++ rightTraceMatrix([v1,...,vn]) is the \spad{n}-by-\spad{n} matrix
++ whose element at the \spad{i}-th row and \spad{j}-th column is given
++ by the right trace of the product \spad{vi*vj}.
leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial R
++ leftCharacteristicPolynomial(a) returns the characteristic
++ polynomial of the left regular representation of \spad{a}
++ with respect to any basis.
rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial R
++ rightCharacteristicPolynomial(a) returns the characteristic
++ polynomial of the right regular representation of \spad{a}
++ with respect to any basis.
--we not necessarily have a unit
--if R has CharacteristicZero then CharacteristicZero
--if R has CharacteristicNonZero then CharacteristicNonZero
commutative? : ()-> Boolean
++ commutative?() tests if multiplication in the algebra
++ is commutative.
antiCommutative? : ()-> Boolean
++ antiCommutative?() tests if \spad{a*a = 0}
++ for all \spad{a} in the algebra.
++ Note that this implies \spad{a*b + b*a = 0} for all
++ \spad{a} and \spad{b}.
associative? : ()-> Boolean
++ associative?() tests if multiplication in algebra
++ is associative.
antiAssociative? : ()-> Boolean
++ antiAssociative?() tests if multiplication in algebra
++ is anti-associative, that is, \spad{(a*b)*c + a*(b*c) = 0}
++ for all \spad{a},b,c in the algebra.
leftAlternative? : ()-> Boolean
++ leftAlternative?() tests if \spad{2*associator(a,a,b) = 0}
++ for all \spad{a}, b in the algebra.
++ Note that we only can test this; in general we don't know
++ whether \spad{2*a=0} implies \spad{a=0}.
rightAlternative? : ()-> Boolean
++ rightAlternative?() tests if \spad{2*associator(a,b,b) = 0}
++ for all \spad{a}, b in the algebra.
++ Note that we only can test this; in general we don't know
++ whether \spad{2*a=0} implies \spad{a=0}.
flexible? : ()-> Boolean
++ flexible?() tests if \spad{2*associator(a,b,a) = 0}
++ for all \spad{a}, b in the algebra.
++ Note that we only can test this; in general we don't know
++ whether \spad{2*a=0} implies \spad{a=0}.
alternative? : ()-> Boolean
++ alternative?() tests if
++ \spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)}
++ for all \spad{a}, b in the algebra.
++ Note that we only can test this; in general we don't know
++ whether \spad{2*a=0} implies \spad{a=0}.
powerAssociative? : ()-> Boolean
++ powerAssociative?() tests if all subalgebras
++ generated by a single element are associative.
jacobiIdentity? : () -> Boolean
++ jacobiIdentity?() tests if \spad{(a*b)*c + (b*c)*a + (c*a)*b = 0}
++ for all \spad{a},b,c in the algebra. For example, this holds
++ for crossed products of 3-dimensional vectors.
lieAdmissible? : () -> Boolean
++ lieAdmissible?() tests if the algebra defined by the commutators
++ is a Lie algebra, that is, satisfies the Jacobi identity.
++ The property of anticommutativity follows from definition.
jordanAdmissible? : () -> Boolean
++ jordanAdmissible?() tests if 2 is invertible in the
++ coefficient domain and the multiplication defined by
++ \spad{(1/2)(a*b+b*a)} determines a
++ Jordan algebra, that is, satisfies the Jordan identity.
++ The property of \spadatt{commutative("*")}
++ follows from by definition.
noncommutativeJordanAlgebra? : () -> Boolean
++ noncommutativeJordanAlgebra?() tests if the algebra
++ is flexible and Jordan admissible.
jordanAlgebra? : () -> Boolean
++ jordanAlgebra?() tests if the algebra is commutative,
++ characteristic is not 2, and \spad{(a*b)*a**2 - a*(b*a**2) = 0}
++ for all \spad{a},b,c in the algebra (Jordan identity).
++ Example:
++ for every associative algebra \spad{(A,+,@)} we can construct a
++ Jordan algebra \spad{(A,+,*)}, where \spad{a*b := (a@b+b@a)/2}.
lieAlgebra? : () -> Boolean
++ lieAlgebra?() tests if the algebra is anticommutative
++ and \spad{(a*b)*c + (b*c)*a + (c*a)*b = 0}
++ for all \spad{a},b,c in the algebra (Jacobi identity).
++ Example:
++ for every associative algebra \spad{(A,+,@)} we can construct a
++ Lie algebra \spad{(A,+,*)}, where \spad{a*b := a@b-b@a}.
if R has IntegralDomain then
-- we not neccessarily have a unit, hence we don't inherit
-- the next 3 functions and hence copy them from MonadWithUnit:
recip : % -> Union(%,"failed")
++ recip(a) returns an element, which is both a left and a right
++ inverse of \spad{a},
++ or \spad{"failed"} if there is no unit element, if such an
++ element doesn't exist or cannot be determined (see unitsKnown).
leftRecip : % -> Union(%,"failed")
++ leftRecip(a) returns an element, which is a left inverse of
++ \spad{a}, or \spad{"failed"} if there is no unit element, if such
++ an element doesn't exist or cannot be determined (see unitsKnown).
rightRecip : % -> Union(%,"failed")
++ rightRecip(a) returns an element, which is a right inverse of
++ \spad{a},
++ or \spad{"failed"} if there is no unit element, if such an
++ element doesn't exist or cannot be determined (see unitsKnown).
associatorDependence : () -> List Vector R
++ associatorDependence() looks for the associator identities, that
++ is, finds a basis of the solutions of the linear combinations of the
++ six permutations of \spad{associator(a,b,c)} which yield 0,
++ for all \spad{a},b,c in the algebra.
++ The order of the permutations is \spad{123 231 312 132 321 213}.
leftMinimalPolynomial : % -> SparseUnivariatePolynomial R
++ leftMinimalPolynomial(a) returns the polynomial determined by the
++ smallest non-trivial linear combination of left powers of
++ \spad{a}. Note that the polynomial never has a constant term as in
++ general the algebra has no unit.
rightMinimalPolynomial : % -> SparseUnivariatePolynomial R
++ rightMinimalPolynomial(a) returns the polynomial determined by the
++ smallest non-trivial linear
++ combination of right powers of \spad{a}.
++ Note that the polynomial never has a constant term as in general
++ the algebra has no unit.
leftUnits : () -> Union(Record(particular: %, basis: List %), "failed")
++ leftUnits() returns the affine space of all left units of the
++ algebra, or \spad{"failed"} if there is none.
rightUnits : () -> Union(Record(particular: %, basis: List %), "failed")
++ rightUnits() returns the affine space of all right units of the
++ algebra, or \spad{"failed"} if there is none.
leftUnit : () -> Union(%, "failed")
++ leftUnit() returns a left unit of the algebra
++ (not necessarily unique), or \spad{"failed"} if there is none.
rightUnit : () -> Union(%, "failed")
++ rightUnit() returns a right unit of the algebra
++ (not necessarily unique), or \spad{"failed"} if there is none.
unit : () -> Union(%, "failed")
++ unit() returns a unit of the algebra (necessarily unique),
++ or \spad{"failed"} if there is none.
-- we not necessarily have a unit, hence we can't say anything
-- about characteristic
-- if R has CharacteristicZero then CharacteristicZero
-- if R has CharacteristicNonZero then CharacteristicNonZero
unitsKnown
++ unitsKnown means that \spadfun{recip} truly yields reciprocal
++ or \spad{"failed"} if not a unit,
++ similarly for \spadfun{leftRecip} and
++ \spadfun{rightRecip}. The reason is that we use left, respectively
++ right, minimal polynomials to decide this question.
add
--n := rank()
--b := someBasis()
--gamma : Vector Matrix R := structuralConstants b
-- here is a problem: there seems to be a problem having local
-- variables in the capsule of a category, furthermore
-- see the commented code of conditionsForIdempotents, where
-- we call structuralConstants, which also doesn't work
-- at runtime, is not properly inherited, hence for
-- the moment we put the code for
-- conditionsForIdempotents, structuralConstants, unit, leftUnit,
-- rightUnit into the domain constructor ALGSC
V ==> Vector
M ==> Matrix
REC ==> Record(particular: Union(V R,"failed"),basis: List V R)
LSMP ==> LinearSystemMatrixPackage(R,V R,V R, M R)
SUP ==> SparseUnivariatePolynomial
NNI ==> NonNegativeInteger
-- next 2 functions: use a general characteristicPolynomial
leftCharacteristicPolynomial a ==
n := rank()$%
ma : Matrix R := leftRegularRepresentation(a,someBasis()$%)
mb : Matrix SUP R := zero(n,n)
for i in 1..n repeat
for j in 1..n repeat
mb(i,j):=
i=j => monomial(ma(i,j),0)$SUP(R) - monomial(1,1)$SUP(R)
monomial(ma(i,j),1)$SUP(R)
determinant mb
rightCharacteristicPolynomial a ==
n := rank()$%
ma : Matrix R := rightRegularRepresentation(a,someBasis()$%)
mb : Matrix SUP R := zero(n,n)
for i in 1..n repeat
for j in 1..n repeat
mb(i,j):=
i=j => monomial(ma(i,j),0)$SUP(R) - monomial(1,1)$SUP(R)
monomial(ma(i,j),1)$SUP(R)
determinant mb
leftTrace a ==
t : R := 0
ma : Matrix R := leftRegularRepresentation(a,someBasis()$%)
for i in 1..rank()$% repeat
t := t + elt(ma,i,i)
t
rightTrace a ==
t : R := 0
ma : Matrix R := rightRegularRepresentation(a,someBasis()$%)
for i in 1..rank()$% repeat
t := t + elt(ma,i,i)
t
leftNorm a == determinant leftRegularRepresentation(a,someBasis()$%)
rightNorm a == determinant rightRegularRepresentation(a,someBasis()$%)
antiAssociative?() ==
b := someBasis()
n := rank()
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
not zero? ( (b.i*b.j)*b.k + b.i*(b.j*b.k) ) =>
messagePrint("algebra is not anti-associative")$OutputForm
return false
messagePrint("algebra is anti-associative")$OutputForm
true
jordanAdmissible?() ==
b := someBasis()
n := rank()
recip(2 * 1$R) case "failed" =>
messagePrint("this algebra is not Jordan admissible, " _
"as 2 is not invertible in the ground ring")$OutputForm
false
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
for l in 1..n repeat
not zero? ( _
antiCommutator(antiCommutator(b.i,b.j),_
antiCommutator(b.l,b.k)) + _
antiCommutator(antiCommutator(b.l,b.j),_
antiCommutator(b.k,b.i)) + _
antiCommutator(antiCommutator(b.k,b.j),_
antiCommutator(b.i,b.l)) _
) =>
messagePrint(_
"this algebra is not Jordan admissible")$OutputForm
return false
messagePrint("this algebra is Jordan admissible")$OutputForm
true
lieAdmissible?() ==
n := rank()
b := someBasis()
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
not zero? (commutator(commutator(b.i,b.j),b.k) _
+ commutator(commutator(b.j,b.k),b.i) _
+ commutator(commutator(b.k,b.i),b.j)) =>
messagePrint("this algebra is not Lie admissible")$OutputForm
return false
messagePrint("this algebra is Lie admissible")$OutputForm
true
structuralConstants b ==
--n := rank()
-- be careful with the possibility that b is not a basis
m : NonNegativeInteger := (maxIndex b) :: NonNegativeInteger
sC : Vector Matrix R := [new(m,m,0$R) for k in 1..m]
for i in 1..m repeat
for j in 1..m repeat
covec : Vector R := coordinates(b.i * b.j, b)
for k in 1..m repeat
setelt( sC.k, i, j, covec.k )
sC
if R has IntegralDomain then
leftRecip x ==
zero? x => "failed"
lu := leftUnit()
lu case "failed" => "failed"
b := someBasis()
xx : % := (lu :: %)
k : PositiveInteger := 1
cond : Matrix R := coordinates(xx,b) :: Matrix(R)
listOfPowers : List % := [xx]
while rank(cond) = k repeat
k := k+1
xx := xx*x
listOfPowers := cons(xx,listOfPowers)
cond := horizConcat(cond, coordinates(xx,b) :: Matrix(R) )
vectorOfCoef : Vector R := (nullSpace(cond)$Matrix(R)).first
invC := recip vectorOfCoef.1
invC case "failed" => "failed"
invCR : R := - (invC :: R)
reduce(_+,[(invCR*vectorOfCoef.i)*power for i in _
2..maxIndex vectorOfCoef for power in reverse listOfPowers])
rightRecip x ==
zero? x => "failed"
ru := rightUnit()
ru case "failed" => "failed"
b := someBasis()
xx : % := (ru :: %)
k : PositiveInteger := 1
cond : Matrix R := coordinates(xx,b) :: Matrix(R)
listOfPowers : List % := [xx]
while rank(cond) = k repeat
k := k+1
xx := x*xx
listOfPowers := cons(xx,listOfPowers)
cond := horizConcat(cond, coordinates(xx,b) :: Matrix(R) )
vectorOfCoef : Vector R := (nullSpace(cond)$Matrix(R)).first
invC := recip vectorOfCoef.1
invC case "failed" => "failed"
invCR : R := - (invC :: R)
reduce(_+,[(invCR*vectorOfCoef.i)*power for i in _
2..maxIndex vectorOfCoef for power in reverse listOfPowers])
recip x ==
lrx := leftRecip x
lrx case "failed" => "failed"
rrx := rightRecip x
rrx case "failed" => "failed"
(lrx :: %) ^= (rrx :: %) => "failed"
lrx :: %
leftMinimalPolynomial x ==
zero? x => monomial(1$R,1)$(SparseUnivariatePolynomial R)
b := someBasis()
xx : % := x
k : PositiveInteger := 1
cond : Matrix R := coordinates(xx,b) :: Matrix(R)
while rank(cond) = k repeat
k := k+1
xx := x*xx
cond := horizConcat(cond, coordinates(xx,b) :: Matrix(R) )
vectorOfCoef : Vector R := (nullSpace(cond)$Matrix(R)).first
res : SparseUnivariatePolynomial R := 0
for i in 1..k repeat
res:=res+monomial(vectorOfCoef.i,i)$(SparseUnivariatePolynomial R)
res
rightMinimalPolynomial x ==
zero? x => monomial(1$R,1)$(SparseUnivariatePolynomial R)
b := someBasis()
xx : % := x
k : PositiveInteger := 1
cond : Matrix R := coordinates(xx,b) :: Matrix(R)
while rank(cond) = k repeat
k := k+1
xx := xx*x
cond := horizConcat(cond, coordinates(xx,b) :: Matrix(R) )
vectorOfCoef : Vector R := (nullSpace(cond)$Matrix(R)).first
res : SparseUnivariatePolynomial R := 0
for i in 1..k repeat
res:=res+monomial(vectorOfCoef.i,i)$(SparseUnivariatePolynomial R)
res
associatorDependence() ==
n := rank()
b := someBasis()
cond : Matrix(R) := new(n**4,6,0$R)$Matrix(R)
z : Integer := 0
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
a123 : Vector R := coordinates(associator(b.i,b.j,b.k),b)
a231 : Vector R := coordinates(associator(b.j,b.k,b.i),b)
a312 : Vector R := coordinates(associator(b.k,b.i,b.j),b)
a132 : Vector R := coordinates(associator(b.i,b.k,b.j),b)
a321 : Vector R := coordinates(associator(b.k,b.j,b.i),b)
a213 : Vector R := coordinates(associator(b.j,b.i,b.k),b)
for r in 1..n repeat
z:= z+1
setelt(cond,z,1,elt(a123,r))
setelt(cond,z,2,elt(a231,r))
setelt(cond,z,3,elt(a312,r))
setelt(cond,z,4,elt(a132,r))
setelt(cond,z,5,elt(a321,r))
setelt(cond,z,6,elt(a213,r))
nullSpace(cond)
jacobiIdentity?() ==
n := rank()
b := someBasis()
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
not zero? ((b.i*b.j)*b.k + (b.j*b.k)*b.i + (b.k*b.i)*b.j) =>
messagePrint("Jacobi identity does not hold")$OutputForm
return false
messagePrint("Jacobi identity holds")$OutputForm
true
lieAlgebra?() ==
not antiCommutative?() =>
messagePrint("this is not a Lie algebra")$OutputForm
false
not jacobiIdentity?() =>
messagePrint("this is not a Lie algebra")$OutputForm
false
messagePrint("this is a Lie algebra")$OutputForm
true
jordanAlgebra?() ==
b := someBasis()
n := rank()
recip(2 * 1$R) case "failed" =>
messagePrint("this is not a Jordan algebra, as 2 is not " _
"invertible in the ground ring")$OutputForm
false
not commutative?() =>
messagePrint("this is not a Jordan algebra")$OutputForm
false
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
for l in 1..n repeat
not zero? (associator(b.i,b.j,b.l*b.k)+_
associator(b.l,b.j,b.k*b.i)+associator(b.k,b.j,b.i*b.l)) =>
messagePrint("not a Jordan algebra")$OutputForm
return false
messagePrint("this is a Jordan algebra")$OutputForm
true
noncommutativeJordanAlgebra?() ==
b := someBasis()
n := rank()
recip(2 * 1$R) case "failed" =>
messagePrint("this is not a noncommutative Jordan algebra,_
as 2 is not invertible in the ground ring")$OutputForm
false
not flexible?()$% =>
messagePrint("this is not a noncommutative Jordan algebra,_
as it is not flexible")$OutputForm
false
not jordanAdmissible?()$% =>
messagePrint("this is not a noncommutative Jordan algebra,_
as it is not Jordan admissible")$OutputForm
false
messagePrint("this is a noncommutative Jordan algebra")$OutputForm
true
antiCommutative?() ==
b := someBasis()
n := rank()
for i in 1..n repeat
for j in i..n repeat
not zero? (i=j => b.i*b.i; b.i*b.j + b.j*b.i) =>
messagePrint("algebra is not anti-commutative")$OutputForm
return false
messagePrint("algebra is anti-commutative")$OutputForm
true
commutative?() ==
b := someBasis()
n := rank()
for i in 1..n repeat
for j in i+1..n repeat
not zero? commutator(b.i,b.j) =>
messagePrint("algebra is not commutative")$OutputForm
return false
messagePrint("algebra is commutative")$OutputForm
true
associative?() ==
b := someBasis()
n := rank()
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
not zero? associator(b.i,b.j,b.k) =>
messagePrint("algebra is not associative")$OutputForm
return false
messagePrint("algebra is associative")$OutputForm
true
leftAlternative?() ==
b := someBasis()
n := rank()
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
not zero? (associator(b.i,b.j,b.k) + associator(b.j,b.i,b.k)) =>
messagePrint("algebra is not left alternative")$OutputForm
return false
messagePrint("algebra satisfies 2*associator(a,a,b) = 0")$OutputForm
true
rightAlternative?() ==
b := someBasis()
n := rank()
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
not zero? (associator(b.i,b.j,b.k) + associator(b.i,b.k,b.j)) =>
messagePrint("algebra is not right alternative")$OutputForm
return false
messagePrint("algebra satisfies 2*associator(a,b,b) = 0")$OutputForm
true
flexible?() ==
b := someBasis()
n := rank()
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
not zero? (associator(b.i,b.j,b.k) + associator(b.k,b.j,b.i)) =>
messagePrint("algebra is not flexible")$OutputForm
return false
messagePrint("algebra satisfies 2*associator(a,b,a) = 0")$OutputForm
true
alternative?() ==
b := someBasis()
n := rank()
for i in 1..n repeat
for j in 1..n repeat
for k in 1..n repeat
not zero? (associator(b.i,b.j,b.k) + associator(b.j,b.i,b.k)) =>
messagePrint("algebra is not alternative")$OutputForm
return false
not zero? (associator(b.i,b.j,b.k) + associator(b.i,b.k,b.j)) =>
messagePrint("algebra is not alternative")$OutputForm
return false
messagePrint("algebra satisfies 2*associator(a,b,b) = 0 " _
"= 2*associator(a,a,b) = 0")$OutputForm
true
leftDiscriminant v == determinant leftTraceMatrix v
rightDiscriminant v == determinant rightTraceMatrix v
coordinates(v:Vector %, b:Vector %) ==
m := new(#v, #b, 0)$Matrix(R)
for i in minIndex v .. maxIndex v for j in minRowIndex m .. repeat
setRow_!(m, j, coordinates(qelt(v, i), b))
m
represents(v, b) ==
m := minIndex v - 1
reduce(_+,[v(i+m) * b(i+m) for i in 1..maxIndex b])
leftTraceMatrix v ==
matrix [[leftTrace(v.i*v.j) for j in minIndex v..maxIndex v]$List(R)
for i in minIndex v .. maxIndex v]$List(List R)
rightTraceMatrix v ==
matrix [[rightTrace(v.i*v.j) for j in minIndex v..maxIndex v]$List(R)
for i in minIndex v .. maxIndex v]$List(List R)
leftRegularRepresentation(x, b) ==
m := minIndex b - 1
matrix
[parts coordinates(x*b(i+m),b) for i in 1..rank()]$List(List R)
rightRegularRepresentation(x, b) ==
m := minIndex b - 1
matrix
[parts coordinates(b(i+m)*x,b) for i in 1..rank()]$List(List R)
|