This file is indexed.

/usr/share/axiom-20170501/src/algebra/FLALG.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
)abbrev category FLALG FreeLieAlgebra
++ Author: Michel Petitot (petitot@lifl.fr)
++ Date Created: 91
++ Date Last Updated: 7 Juillet 92
++ Fix History: compilation v 2.1 le 13 dec 98
++ Description:
++ The category of free Lie algebras.
++ It is used by domains of non-commutative algebra:
++ \spadtype{LiePolynomial} and 
++ \spadtype{XPBWPolynomial}. 

FreeLieAlgebra(VarSet,R) : Category == SIG where
  VarSet : OrderedSet
  R : CommutativeRing

  XRPOLY  ==> XRecursivePolynomial(VarSet,R)
  XDPOLY  ==> XDistributedPolynomial(VarSet,R)
  RN      ==> Fraction Integer
  LWORD   ==> LyndonWord(VarSet)

  SIG ==> Join(LieAlgebra(R)) with

    coef : (XRPOLY , $) -> R
      ++ \axiom{coef(x,y)} returns the scalar product of \axiom{x} by 
      ++ \axiom{y}, the set of words being regarded as an orthogonal basis.

    coerce : VarSet -> $
      ++ \axiom{coerce(x)} returns \axiom{x} as a Lie polynomial.

    coerce : $ -> XDPOLY
      ++ \axiom{coerce(x)} returns \axiom{x} as distributed polynomial.

    coerce : $ -> XRPOLY 
      ++ \axiom{coerce(x)} returns \axiom{x} as a recursive polynomial.

    degree : $ -> NonNegativeInteger
      ++ \axiom{degree(x)} returns the greatest length of a word in the 
      ++ support of \axiom{x}.

    --if R has Module(RN) then
    --  Hausdorff : ($,$,PositiveInteger) -> $

    lquo : (XRPOLY , $) -> XRPOLY
      ++ \axiom{lquo(x,y)} returns the left simplification of \axiom{x} 
      ++ by \axiom{y}.

    rquo : (XRPOLY , $) -> XRPOLY
      ++ \axiom{rquo(x,y)} returns the right simplification of \axiom{x} 
      ++ by \axiom{y}.

    LiePoly : LWORD -> $
      ++ \axiom{LiePoly(l)} returns the bracketed form of \axiom{l} as 
      ++ a Lie polynomial.

    mirror : $ -> $
      ++ \axiom{mirror(x)} returns \axiom{Sum(r_i mirror(w_i))}
      ++ if \axiom{x} is \axiom{Sum(r_i w_i)}.

    trunc : ($, NonNegativeInteger) -> $
      ++ \axiom{trunc(p,n)} returns the polynomial \axiom{p} 
      ++ truncated at order \axiom{n}.

    varList : $ -> List VarSet
      ++ \axiom{varList(x)} returns the list of distinct entries 
      ++ of \axiom{x}.

    eval : ($, VarSet, $) -> $
      ++ \axiom{eval(p, x, v)} replaces \axiom{x} by \axiom{v}  
      ++ in \axiom{p}.

    eval : ($, List VarSet, List $) -> $
      ++ \axiom{eval(p, [x1,...,xn], [v1,...,vn])} replaces \axiom{xi} 
      ++ by \axiom{vi} in \axiom{p}.