This file is indexed.

/usr/share/axiom-20170501/src/algebra/FLOAT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
)abbrev domain FLOAT Float

++ Author: Michael Monagan
++ Date Created:  December 1987
++ Change History: 19 Jun 1990
++ References:
++ Corl00 According to Abramowitz and Stegun or arccoth needn't be Uncouth
++ Fate01a A Critique of OpenMath and Thoughts on Encoding Mathematics
++ Description:
++ \spadtype{Float} implements arbitrary precision floating point arithmetic.
++ The number of significant digits of each operation can be set
++ to an arbitrary value (the default is 20 decimal digits).
++ The operation \spad{float(mantissa,exponent,base)} for integer
++ \spad{mantissa}, \spad{exponent} specifies the number
++ \spad{mantissa * base ** exponent}
++ The underlying representation for floats is binary
++ not decimal. The implications of this are described below.
++
++ The model adopted is that arithmetic operations are rounded to
++ to nearest unit in the last place, that is, accurate to within
++ \spad{2**(-bits)}. Also, the elementary functions and constants are
++ accurate to one unit in the last place.
++ A float is represented as a record of two integers, the mantissa
++ and the exponent.  The base of the representation is binary, hence
++ a \spad{Record(m:mantissa,e:exponent)} represents the number 
++ \spad{m * 2 ** e}.
++ Though it is not assumed that the underlying integers are represented
++ with a binary base, the code will be most efficient when this is the
++ the case (this is true in most implementations of Lisp).
++ The decision to choose the base to be binary has some unfortunate
++ consequences.  First, decimal numbers like 0.3 cannot be represented
++ exactly.  Second, there is a further loss of accuracy during
++ conversion to decimal for output.  To compensate for this, if d digits
++ of precision are specified, \spad{1 + ceiling(log2(10^d))} bits are used.
++ Two numbers that are displayed identically may therefore be
++ not equal.  On the other hand, a significant efficiency loss would
++ be incurred if we chose to use a decimal base when the underlying
++ integer base is binary.
++
++ Algorithms used:
++ For the elementary functions, the general approach is to apply
++ identities so that the taylor series can be used, and, so
++ that it will converge within \spad{O( sqrt n )} steps.  For example,
++ using the identity \spad{exp(x) = exp(x/2)**2}, we can compute
++ \spad{exp(1/3)} to n digits of precision as follows.  We have
++ \spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}.
++ The taylor series will converge in less than sqrt n steps and the
++ exponentiation requires sqrt n multiplications for a total of
++ \spad{2 sqrt n} multiplications.  Assuming integer multiplication costs
++ \spad{O( n**2 )} the overall running time is \spad{O( sqrt(n) n**2 )}.
++ This approach is the best known approach for precisions up to
++ about 10,000 digits at which point the methods of Brent
++ which are \spad{O( log(n) n**2 )} become competitive.  Note also that
++ summing the terms of the taylor series for the elementary
++ functions is done using integer operations.  This avoids the
++ overhead of floating point operations and results in efficient
++ code at low precisions.  This implementation makes no attempt
++ to reuse storage, relying on the underlying system to do
++ \spadgloss{garbage collection}.  I estimate that the efficiency of this
++ package at low precisions could be improved by a factor of 2
++ if in-place operations were available.
++
++ Running times: in the following, n is the number of bits of precision\br
++ \spad{*}, \spad{/}, \spad{sqrt}, \spad{pi}, \spad{exp1}, \spad{log2}, 
++ \spad{log10}: \spad{ O( n**2 )} \br
++ \spad{exp}, \spad{log}, \spad{sin}, \spad{atan}: \spad{O(sqrt(n) n**2)}\br
++ The other elementary functions are coded in terms of the ones above.

Float() : SIG == CODE where

  B ==> Boolean
  I ==> Integer
  S ==> String
  PI ==> PositiveInteger
  RN ==> Fraction Integer
  SF ==> DoubleFloat
  N ==> NonNegativeInteger

  SIG ==> Join(FloatingPointSystem, DifferentialRing, ConvertibleTo String, 
               OpenMath,  CoercibleTo DoubleFloat, 
               TranscendentalFunctionCategory, ConvertibleTo InputForm) with

     _/  : (%, I) -> %
       ++ x / i computes the division from x by an integer i.

     _*_* : (%, %) -> %
       ++ x ** y computes \spad{exp(y log x)} where \spad{x >= 0}.

     normalize : % -> %
       ++ normalize(x) normalizes x at current precision.

     relerror : (%, %) -> I
       ++ relerror(x,y) computes the absolute value of \spad{x - y} divided by
       ++ y, when \spad{y \^= 0}.

     shift : (%, I) -> %
       ++ shift(x,n) adds n to the exponent of float x.

     rationalApproximation : (%, N) -> RN
       ++ rationalApproximation(f, n) computes a rational approximation
       ++ r to f with relative error \spad{< 10**(-n)}.

     rationalApproximation : (%, N, N) -> RN
       ++ rationalApproximation(f, n, b) computes a rational
       ++ approximation r to f with relative error \spad{< b**(-n)}, that is
       ++ \spad{|(r-f)/f| < b**(-n)}.

     log2 : () -> %
       ++ log2() returns \spad{ln 2}, \spad{0.6931471805...}.

     log10: () -> %
       ++ log10() returns \spad{ln 10}: \spad{2.3025809299...}.

     exp1 : () -> %
       ++ exp1() returns  exp 1: \spad{2.7182818284...}.

     atan : (%,%) -> %
       ++ atan(x,y) computes the arc tangent from x with phase y.

     log2 : % -> %
       ++ log2(x) computes the logarithm for x to base 2.

     log10 : % -> %
       ++ log10(x) computes the logarithm for x to base 10.

     convert : SF -> %
       ++ convert(x) converts a \spadtype{DoubleFloat} x to a \spadtype{Float}.

     outputFloating : () -> Void
       ++ outputFloating() sets the output mode to floating (scientific) 
       ++ notation, \spad{mantissa * 10 exponent} is displayed as 
       ++ \spad{0.mantissa E exponent}.

     outputFloating : N -> Void
       ++ outputFloating(n) sets the output mode to floating (scientific) 
       ++ notation with n significant digits displayed after the decimal point.

     outputFixed : () -> Void
       ++ outputFixed() sets the output mode to fixed point notation;
       ++ the output will contain a decimal point.

     outputFixed : N -> Void
       ++ outputFixed(n) sets the output mode to fixed point notation,
       ++ with n digits displayed after the decimal point.

     outputGeneral : () -> Void
       ++ outputGeneral() sets the output mode (default mode) to general
       ++ notation; numbers will be displayed in either fixed or floating
       ++ (scientific) notation depending on the magnitude.

     outputGeneral : N -> Void
       ++ outputGeneral(n) sets the output mode to general notation
       ++ with n significant digits displayed.

     outputSpacing : N -> Void
       ++ outputSpacing(n) inserts space after n (default 10) digits on output;
       ++ outputSpacing(0) means no spaces are inserted.

     arbitraryPrecision

     arbitraryExponent

  CODE ==> add

   BASE ==> 2

   BITS:Reference(PI) := ref 68 -- 20 digits

   LENGTH ==> INTEGER_-LENGTH$Lisp

   ISQRT ==> approxSqrt$IntegerRoots(I)

   Rep := Record( mantissa:I, exponent:I )

   StoredConstant ==> Record( precision:PI, value:% )

   UCA ==> Record( unit:%, coef:%, associate:% )

   inc ==> increasePrecision

   dec ==> decreasePrecision

   -- local utility operations

   shift2 : (I,I) -> I           -- WSP: fix bug in shift

   times : (%,%) -> %            -- multiply x and y with no rounding

   itimes: (I,%) -> %            -- multiply by a small integer

   chop: (%,PI) -> %             -- chop x at p bits of precision

   dvide: (%,%) -> %             -- divide x by y with no rounding

   square: (%,I) -> %            -- repeated squaring with chopping

   power: (%,I) -> %             -- x ** n with chopping

   plus: (%,%) -> %              -- addition with no rounding

   sub: (%,%) -> %               -- subtraction with no rounding

   negate: % -> %                -- negation with no rounding

   ceillog10base2: PI -> PI      -- rational approximation

   floorln2: PI -> PI            -- rational approximation

   atanSeries: % -> %            -- atan(x) by taylor series |x| < 1/2

   atanInverse: I -> %           -- atan(1/n) for n an integer > 1

   expInverse: I -> %            -- exp(1/n) for n an integer

   expSeries: % -> %             -- exp(x) by taylor series  |x| < 1/2

   logSeries: % -> %             -- log(x) by taylor series 1/2 < x < 2

   sinSeries: % -> %             -- sin(x) by taylor series |x| < 1/2

   cosSeries: % -> %             -- cos(x) by taylor series |x| < 1/2

   piRamanujan: () -> %          -- pi using Ramanujans series

   writeOMFloat(dev: OpenMathDevice, x: %): Void ==
      OMputApp(dev)
      OMputSymbol(dev, "bigfloat1", "bigfloat")
      OMputInteger(dev, mantissa x)
      OMputInteger(dev, 2)
      OMputInteger(dev, exponent x)
      OMputEndApp(dev)

   OMwrite(x: %): String ==
      s: String := ""
      sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
      dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
      OMputObject(dev)
      writeOMFloat(dev, x)
      OMputEndObject(dev)
      OMclose(dev)
      s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
      s

   OMwrite(x: %, wholeObj: Boolean): String ==
      s: String := ""
      sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
      dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
      if wholeObj then
         OMputObject(dev)
      writeOMFloat(dev, x)
      if wholeObj then
         OMputEndObject(dev)
      OMclose(dev)
      s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
      s

   OMwrite(dev: OpenMathDevice, x: %): Void ==
      OMputObject(dev)
      writeOMFloat(dev, x)
      OMputEndObject(dev)

   OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
      if wholeObj then
         OMputObject(dev)
      writeOMFloat(dev, x)
      if wholeObj then
         OMputEndObject(dev)
   
   shift2(x,y) == sign(x)*shift(sign(x)*x,y)

   asin x ==
      zero? x => 0
      negative? x => -asin(-x)
      (x = 1) => pi()/2
      x > 1 => error "asin: argument > 1 in magnitude"
      inc 5; r := atan(x/sqrt(sub(1,times(x,x)))); dec 5
      normalize r

   acos x ==
      zero? x => pi()/2
      negative? x => (inc 3; r := pi()-acos(-x); dec 3; normalize r)
      (x = 1) => 0
      x > 1 => error "acos: argument > 1 in magnitude"
      inc 5; r := atan(sqrt(sub(1,times(x,x)))/x); dec 5
      normalize r

   atan(x,y) ==
      x = 0 =>
         y > 0 => pi()/2
         y < 0 => -pi()/2
         0
      -- Only count on first quadrant being on principal branch.
      theta := atan abs(y/x)
      if x < 0 then theta := pi() - theta
      if y < 0 then theta := - theta
      theta

   atan x ==
      zero? x => 0
      negative? x => -atan(-x)
      if x > 1 then
         inc 4
         r := if zero? fractionPart x and x < [bits(),0] _
                 then atanInverse wholePart x
                 else atan(1/x)
         r := pi/2 - r
         dec 4
         return normalize r
      -- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
      -- by using the formula  atan(x) = 2*atan(x/(1+sqrt(1+x**2)))
      k := ISQRT (bits()-100)::I quo 5
      k := max(0,2 + k + order x)
      inc(2*k)
      for i in 1..k repeat x := x/(1+sqrt(1+x*x))
      t := atanSeries x
      dec(2*k)
      t := shift(t,k)
      normalize t

   atanSeries x ==
      -- atan(x) = x (1 - x**2/3 + x**4/5 - x**6/7 + ...)  |x| < 1
      p := bits() + LENGTH bits() + 2
      s:I := d:I := shift(1,p)
      y := times(x,x)
      t := m := - shift2(y.mantissa,y.exponent+p)
      for i in 3.. by 2 while t ^= 0 repeat
         s := s + t quo i
         t := (m * t) quo d
      x * [s,-p]

   atanInverse n ==
      -- compute atan(1/n) for an integer n > 1
      -- atan n = 1/n - 1/n**3/3 + 1/n**5/4 - ...
      --   pi = 16 atan(1/5) - 4 atan(1/239)
      n2 := -n*n
      e:I := bits() + LENGTH bits() + LENGTH n + 1
      s:I := shift(1,e) quo n
      t:I := s quo n2
      for k in 3.. by 2 while t ^= 0 repeat
         s := s + t quo k
         t := t quo n2
      normalize [s,-e]

   sin x ==
      s := sign x; x := abs x; p := bits(); inc 4
      if x > [6,0] then (inc p; x := 2*pi*fractionPart(x/pi/2); bits p)
      if x > [3,0] then (inc p; s := -s; x := x - pi; bits p)
      if x > [3,-1] then (inc p; x := pi - x; dec p)
      -- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
      -- by using the formula  sin(3*x/3) = 3 sin(x/3) - 4 sin(x/3)**3
      -- the running time is O( sqrt p M(p) ) assuming |x| < 1
      k := ISQRT (bits()-100)::I quo 4
      k := max(0,2 + k + order x)
      if k > 0 then (inc k; x := x / 3**k::N)
      r := sinSeries x
      for i in 1..k repeat r := itimes(3,r)-shift(r**3,2)
      bits p
      s * r

   sinSeries x ==
      -- sin(x) = x (1 - x**2/3! + x**4/5! - x**6/7! + ... |x| < 1/2
      p := bits() + LENGTH bits() + 2
      y := times(x,x)
      s:I := d:I := shift(1,p)
      m:I := - shift2(y.mantissa,y.exponent+p)
      t:I := m quo 6
      for i in 4.. by 2 while t ^= 0 repeat
         s := s + t
         t := (m * t) quo (i*(i+1))
         t := t quo d
      x * [s,-p]

   cos x ==
     s:I := 1; x := abs x; p := bits(); inc 4
     if x > [6,0] then (inc p; x := 2*pi*fractionPart(x/pi/2); dec p)
     if x > [3,0] then (inc p; s := -s; x := x-pi; dec p)
     if x > [1,0] then
         -- take care of the accuracy problem near pi/2
         inc p; x := pi/2-x; bits p; x := normalize x
         return (s * sin x)
      -- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
      -- by using the formula  cos(2*x/2) = 2 cos(x/2)**2 - 1
      -- the running time is O( sqrt p M(p) ) assuming |x| < 1
     k := ISQRT (bits()-100)::I quo 3
     k := max(0,2 + k + order x)
      -- need to increase precision by more than k, otherwise recursion
      -- causes loss of accuracy.
      -- Michael Monagan suggests adding a factor of log(k)
     if k > 0 then (inc(k+length(k)**2); x := shift(x,-k))
     r := cosSeries x
     for i in 1..k repeat r := shift(r*r,1)-1
     bits p
     s * r

   cosSeries x ==
      -- cos(x) = 1 - x**2/2! + x**4/4! - x**6/6! + ... |x| < 1/2
      p := bits() + LENGTH bits() + 1
      y := times(x,x)
      s:I := d:I := shift(1,p)
      m:I := - shift2(y.mantissa,y.exponent+p)
      t:I := m quo 2
      for i in 3.. by 2 while t ^= 0 repeat
         s := s + t
         t := (m * t) quo (i*(i+1))
         t := t quo d
      normalize [s,-p]

   tan x ==
      s := sign x; x := abs x; p := bits(); inc 6
      if x > [3,0] then (inc p; x := pi()*fractionPart(x/pi()); dec p)
      if x > [3,-1] then (inc p; x := pi()-x; s := -s; dec p)
      if x > 1 then (c := cos x; t := sqrt(1-c*c)/c)
      else (c := sin x; t := c/sqrt(1-c*c))
      bits p
      s * t

   P:StoredConstant := [1,[1,2]]

   pi() ==
      -- We use Ramanujan's identity to compute pi.
      -- The running time is quadratic in the precision.
      -- This is about twice as fast as Machin's identity on Lisp/VM
      --   pi = 16 atan(1/5) - 4 atan(1/239)
      bits() <= P.precision => normalize P.value
      (P := [bits(), piRamanujan()]) value

   piRamanujan() ==
      -- Ramanujans identity for 1/pi
      -- Reference: Shanks and Wrench, Math Comp, 1962
      -- "Calculation of pi to 100,000 Decimals".
      n := bits() + LENGTH bits() + 11
      t:I := shift(1,n) quo 882
      d:I := 4*882**2
      s:I := 0
      for i in 2.. by 2 for j in 1123.. by 21460 while t ^= 0 repeat
         s := s + j*t
         m := -(i-1)*(2*i-1)*(2*i-3)
         t := (m*t) quo (d*i**3)
      1 / [s,-n-2]

   sinh x ==
      zero? x => 0
      lost:I := max(- order x,0)
      2*lost > bits() => x
      inc(5+lost); e := exp x; s := (e-1/e)/2; dec(5+lost)
      normalize s

   cosh x ==
      (inc 5; e := exp x; c := (e+1/e)/2; dec 5; normalize c)

   tanh x ==
      zero? x => 0
      lost:I := max(- order x,0)
      2*lost > bits() => x
      inc(6+lost); e := exp x; e := e*e; t := (e-1)/(e+1); dec(6+lost)
      normalize t

   asinh x ==
      p := min(0,order x)
      if zero? x or 2*p < -bits() then return x
      inc(5-p); r := log(x+sqrt(1+x*x)); dec(5-p)
      normalize r

   acosh x ==
      if x < 1 then error "invalid argument to acosh"
      inc 5; r := log(x+sqrt(sub(times(x,x),1))); dec 5
      normalize r

   atanh x ==
      if x > 1 or x < -1 then error "invalid argument to atanh"
      p := min(0,order x)
      if zero? x or 2*p < -bits() then return x
      inc(5-p); r := log((x+1)/(1-x))/2; dec(5-p)
      normalize r

   log x ==
      negative? x => error "negative log"
      zero? x => error "log 0 generated"
      p := bits(); inc 5
      -- apply  log(x) = n log 2 + log(x/2**n)  so that  1/2 < x < 2
      if (n := order x) < 0 then n := n+1
      l := if n = 0 then 0 else (x := shift(x,-n); n * log2)
      -- speed the series convergence by finding m and k such that
      -- | exp(m/2**k) x - 1 |  <  1 / 2 ** O(sqrt p)
      -- write  log(exp(m/2**k) x) as m/2**k + log x
      k := ISQRT (p-100)::I quo 3
      if k > 1 then
         k := max(1,k+order(x-1))
         inc k
         ek := expInverse (2**k::N)
         dec(p quo 2); m := order square(x,k); inc(p quo 2)
         m := (6847196937 * m) quo 9878417065   -- m := m log 2
         x := x * ek ** (-m)
         l := l + [m,-k]
      l := l + logSeries x
      bits p
      normalize l

   logSeries x ==
      -- log(x) = 2 y (1 + y**2/3 + y**4/5 ...)  for  y = (x-1) / (x+1)
      -- given 1/2 < x < 2 on input we have -1/3 < y < 1/3
      p := bits() + (g := LENGTH bits() + 3)
      inc g; y := (x-1)/(x+1); dec g
      s:I := d:I := shift(1,p)
      z := times(y,y)
      t := m := shift2(z.mantissa,z.exponent+p)
      for i in 3.. by 2 while t ^= 0 repeat
         s := s + t quo i
         t := m * t quo d
      y * [s,1-p]

   L2:StoredConstant := [1,1]

   log2() ==
      --  log x  =  2 * sum( ((x-1)/(x+1))**(2*k+1)/(2*k+1), k=1.. )
      --  log 2  =  2 * sum( 1/9**k / (2*k+1), k=0..n ) / 3
      n := bits() :: N
      n <= L2.precision => normalize L2.value
      n := n + LENGTH n + 3  -- guard bits
      s:I := shift(1,n+1) quo 3
      t:I := s quo 9
      for k in 3.. by 2 while t ^= 0 repeat
         s := s + t quo k
         t := t quo 9
      L2 := [bits(),[s,-n]]
      normalize L2.value

   L10:StoredConstant := [1,[1,1]]

   log10() ==
      --  log x  =  2 * sum( ((x-1)/(x+1))**(2*k+1)/(2*k+1), k=0.. )
      --  log 5/4  =  2 * sum( 1/81**k / (2*k+1), k=0.. ) / 9
      n := bits() :: N
      n <= L10.precision => normalize L10.value
      n := n + LENGTH n + 5  -- guard bits
      s:I := shift(1,n+1) quo 9
      t:I := s quo 81
      for k in 3.. by 2 while t ^= 0 repeat
         s := s + t quo k
         t := t quo 81
      -- We have log 10 = log 5 + log 2 and log 5/4 = log 5 - 2 log 2
      inc 2; L10 := [bits(),[s,-n] + 3*log2]; dec 2
      normalize L10.value

   log2(x) == (inc 2; r := log(x)/log2; dec 2; normalize r)

   log10(x) == (inc 2; r := log(x)/log10; dec 2; normalize r)

   exp(x) ==
      -- exp(n+x) = exp(1)**n exp(x) for n such that |x| < 1
      p := bits(); inc 5; e1:% := 1
      if (n := wholePart x) ^= 0 then
         inc LENGTH n; e1 := exp1 ** n; dec LENGTH n
         x := fractionPart x
      if zero? x then (bits p; return normalize e1)
      -- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
      -- by repeated use of the formula exp(2*x/2) = exp(x/2)**2
      -- results in an overall running time of O( sqrt p M(p) )
      k := ISQRT (p-100)::I quo 3
      k := max(0,2 + k + order x)
      if k > 0 then (inc k; x := shift(x,-k))
      e := expSeries x
      if k > 0 then e := square(e,k)
      bits p
      e * e1

   expSeries x ==
      -- exp(x) = 1 + x + x**2/2 + ... + x**i/i!  valid for all x
      p := bits() + LENGTH bits() + 1
      s:I := d:I := shift(1,p)
      t:I := n:I := shift2(x.mantissa,x.exponent+p)
      for i in 2.. while t ^= 0 repeat
         s := s + t
         t := (n * t) quo i
         t := t quo d
      normalize [s,-p]

   expInverse k ==
      -- computes exp(1/k) via continued fraction
      p0:I := 2*k+1; p1:I := 6*k*p0+1
      q0:I := 2*k-1; q1:I := 6*k*q0+1
      for i in 10*k.. by 4*k while 2 * LENGTH p0 < bits() repeat
         (p0,p1) := (p1,i*p1+p0)
         (q0,q1) := (q1,i*q1+q0)
      dvide([p1,0],[q1,0])

   E:StoredConstant := [1,[1,1]]

   exp1() ==
      if bits() > E.precision then E := [bits(),expInverse 1]
      normalize E.value

   sqrt x ==
      negative? x => error "negative sqrt"
      m := x.mantissa; e := x.exponent
      l := LENGTH m
      p := 2 * bits() - l + 2
      if odd?(e-l) then p := p - 1
      i := shift2(x.mantissa,p)
      -- ISQRT uses a variable precision newton iteration
      i := ISQRT i
      normalize [i,(e-p) quo 2]

   bits() == BITS()

   bits(n) == (t := bits(); BITS() := n; t)

   precision() == bits()

   precision(n) == bits(n)

   increasePrecision n == (b := bits(); bits((b + n)::PI); b)

   decreasePrecision n == (b := bits(); bits((b - n)::PI); b)

   ceillog10base2 n == ((13301 * n + 4003) quo 4004) :: PI

   digits() == max(1,4004 * (bits()-1) quo 13301)::PI

   digits(n) == (t := digits(); bits (1 + ceillog10base2 n); t)

   order(a) == LENGTH a.mantissa + a.exponent - 1

   relerror(a,b) == order((a-b)/b)

   0 == [0,0]

   1 == [1,0]

   base() == BASE

   mantissa x == x.mantissa

   exponent x == x.exponent

   one? a == a = 1

   zero? a == zero?(a.mantissa)

   negative? a == negative?(a.mantissa)

   positive? a == positive?(a.mantissa)

   chop(x,p) ==
      e : I := LENGTH x.mantissa - p
      if e > 0 then x := [shift2(x.mantissa,-e),x.exponent+e]
      x

   float(m,e) == normalize [m,e]

   float(m,e,b) ==
      m = 0 => 0
      inc 4; r := m * [b,0] ** e; dec 4
      normalize r

   normalize x ==
      m := x.mantissa
      m = 0 => 0
      e : I := LENGTH m - bits()
      if e > 0 then
         y := shift2(m,1-e)
         if odd? y then
            y := (if y>0 then y+1 else y-1) quo 2
            if LENGTH y > bits() then
               y := y quo 2
               e := e+1
         else y := y quo 2
         x := [y,x.exponent+e]
      x

   shift(x:%,n:I) == [x.mantissa,x.exponent+n]

   x = y ==
      order x = order y and sign x = sign y and zero? (x - y)

   x < y ==
      y.mantissa = 0 => x.mantissa < 0
      x.mantissa = 0 => y.mantissa > 0
      negative? x and positive? y => true
      negative? y and positive? x => false
      order x < order y => positive? x
      order x > order y => negative? x
      negative? (x-y)

   abs x == if negative? x then -x else normalize x

   ceiling x ==
      if negative? x then return (-floor(-x))
      if zero? fractionPart x then x else truncate x + 1

   wholePart x == shift2(x.mantissa,x.exponent)

   floor x == if negative? x then -ceiling(-x) else truncate x

   round x == (half := [sign x,-1]; truncate(x + half))

   sign x == if x.mantissa < 0 then -1 else 1

   truncate x ==
      if x.exponent >= 0 then return x
      normalize [shift2(x.mantissa,x.exponent),0]

   recip(x) == if x=0 then "failed" else 1/x

   differentiate x == 0

   - x == normalize negate x

   negate x == [-x.mantissa,x.exponent]

   x + y == normalize plus(x,y)

   x - y == normalize plus(x,negate y)

   sub(x,y) == plus(x,negate y)

   plus(x,y) ==
      mx := x.mantissa; my := y.mantissa
      mx = 0 => y
      my = 0 => x
      ex := x.exponent; ey := y.exponent
      ex = ey => [mx+my,ex]
      de := ex + LENGTH mx - ey - LENGTH my
      de > bits()+1 => x
      de < -(bits()+1) => y
      if ex < ey then (mx,my,ex,ey) := (my,mx,ey,ex)
      mw := my + shift2(mx,ex-ey)
      [mw,ey]

   x:% * y:% == normalize times (x,y)

   x:I * y:% ==
      if LENGTH x > bits() then normalize [x,0] * y
      else normalize [x * y.mantissa,y.exponent]

   x:% / y:% == normalize dvide(x,y)

   x:% / y:I ==
      if LENGTH y > bits() then x / normalize [y,0] else x / [y,0]

   inv x == 1 / x

   times(x:%,y:%) == [x.mantissa * y.mantissa, x.exponent + y.exponent]

   itimes(n:I,y:%) == [n * y.mantissa,y.exponent]

   dvide(x,y) ==
      ew := LENGTH y.mantissa - LENGTH x.mantissa + bits() + 1
      mw := shift2(x.mantissa,ew) quo y.mantissa
      ew := x.exponent - y.exponent - ew
      [mw,ew]

   square(x,n) ==
      ma := x.mantissa; ex := x.exponent
      for k in 1..n repeat
         ma := ma * ma; ex := ex + ex
         l:I := bits()::I - LENGTH ma
         ma := shift2(ma,l); ex := ex - l
      [ma,ex]

   power(x,n) ==
      y:% := 1; z:% := x
      repeat
         if odd? n then y := chop( times(y,z), bits() )
         if (n := n quo 2) = 0 then return y
         z := chop( times(z,z), bits() )

   x:% ** y:% ==
      x = 0 =>
         y = 0 => error "0**0 is undefined"
         y < 0 => error "division by 0"
         y > 0 => 0
      y = 0 => 1
      y = 1 => x
      x = 1 => 1
      p := abs order y + 5
      inc p; r := exp(y*log(x)); dec p
      normalize r

   x:% ** r:RN ==
      x = 0 =>
         r = 0 => error "0**0 is undefined"
         r < 0 => error "division by 0"
         r > 0 => 0
      r = 0 => 1
      r = 1 => x
      x = 1 => 1
      n := numer r
      d := denom r
      negative? x =>
         odd? d =>
            odd? n => return -((-x)**r)
            return ((-x)**r)
         error "negative root"
      if d = 2 then
         inc LENGTH n; y := sqrt(x); y := y**n; dec LENGTH n
         return normalize y
      y := [n,0]/[d,0]
      x ** y

   x:% ** n:I ==
      x = 0 =>
         n = 0 => error "0**0 is undefined"
         n < 0 => error "division by 0"
         n > 0 => 0
      n = 0 => 1
      n = 1 => x
      x = 1 => 1
      p := bits()
      bits(p + LENGTH n + 2)
      y := power(x,abs n)
      if n < 0 then y := dvide(1,y)
      bits p
      normalize y

   -- Utility routines for conversion to decimal

   ceilLength10: I -> I

   chop10: (%,I) -> %

   convert10:(%,I) -> %

   floorLength10: I -> I

   length10: I -> I

   normalize10: (%,I) -> %

   quotient10: (%,%,I) -> %

   power10: (%,I,I) -> %

   times10: (%,%,I) -> %

   convert10(x,d) ==
      m := x.mantissa; e := x.exponent
      --!! deal with bits here
      b := bits(); (q,r) := divide(abs e, b)
      b := 2**b::N; r := 2**r::N
      -- compute 2**e = b**q * r
      h := power10([b,0],q,d+5)
      h := chop10([r*h.mantissa,h.exponent],d+5)
      if e < 0 then h := quotient10([m,0],h,d)
      else times10([m,0],h,d)

   ceilLength10 n == 146 * LENGTH n quo 485 + 1

   floorLength10 n == 643 *  LENGTH n quo 2136

   length10 n ==
      ln := LENGTH(n:=abs n)
      upper := 76573 * ln quo 254370
      lower := 21306 * (ln-1) quo 70777
      upper = lower => upper + 1
      n := n quo (10**lower::N)
      while n >= 10 repeat
         n:= n quo 10
         lower := lower + 1
      lower + 1

   chop10(x,p) ==
      e : I := floorLength10 x.mantissa - p
      if e > 0 then x := [x.mantissa quo 10**e::N,x.exponent+e]
      x

   normalize10(x,p) ==
      ma := x.mantissa
      ex := x.exponent
      e : I := length10 ma - p
      if e > 0 then
         ma := ma quo 10**(e-1)::N
         ex := ex + e
         (ma,r) := divide(ma, 10)
         if r > 4 then
            ma := ma + 1
            if ma = 10**p::N then (ma := 1; ex := ex + p)
      [ma,ex]

   times10(x,y,p) == normalize10(times(x,y),p)

   quotient10(x,y,p) ==
      ew := floorLength10 y.mantissa - ceilLength10 x.mantissa + p + 2
      if ew < 0 then ew := 0
      mw := (x.mantissa * 10**ew::N) quo y.mantissa
      ew := x.exponent - y.exponent - ew
      normalize10([mw,ew],p)

   power10(x,n,d) ==
      x = 0 => 0
      n = 0 => 1
      n = 1 => x
      x = 1 => 1
      p:I := d + LENGTH n + 1
      e:I := n
      y:% := 1
      z:% := x
      repeat
         if odd? e then y := chop10(times(y,z),p)
         if (e := e quo 2) = 0 then return y
         z := chop10(times(z,z),p)

   --------------------------------
   -- Output routines for Floats --
   --------------------------------
   zero ==> char("0")

   separator ==> space()$Character

   SPACING : Reference(N) := ref 10

   OUTMODE : Reference(S) := ref "general"

   OUTPREC : Reference(I) := ref(-1)

   fixed : % -> S

   floating : % -> S

   general : % -> S

   padFromLeft(s:S):S ==
      zero? SPACING() => s
      n:I := #s - 1
      t := new( (n + 1 + n quo SPACING()) :: N , separator )
      for i in 0..n for j in minIndex t .. repeat
         t.j := s.(i + minIndex s)
         if (i+1) rem SPACING() = 0 then j := j+1
      t
   padFromRight(s:S):S ==
      SPACING() = 0 => s
      n:I := #s - 1
      t := new( (n + 1 + n quo SPACING()) :: N , separator )
      for i in n..0 by -1 for j in maxIndex t .. by -1 repeat
         t.j := s.(i + minIndex s)
         if (n-i+1) rem SPACING() = 0 then j := j-1
      t

   fixed f ==
      d := if OUTPREC() = -1 then digits::I else OUTPREC()
      dpos:N:= if (d > 0) then d::N else 1::N
      zero? f =>
        OUTPREC() = -1 => "0.0"
        concat("0",concat(".",padFromLeft new(dpos,zero)))
      zero? exponent f =>
        concat(padFromRight convert(mantissa f)@S,
               concat(".",padFromLeft new(dpos,zero)))
      negative? f => concat("-", fixed abs f)
      bl := LENGTH(f.mantissa) + f.exponent
      dd :=
        OUTPREC() = -1 => d
        bl > 0 => (146*bl) quo 485 + 1 + d
        d
      g := convert10(abs f,dd)
      m := g.mantissa
      e := g.exponent
      if OUTPREC() ^= -1 then
         -- round g to OUTPREC digits after the decimal point
         l := length10 m
         if -e > OUTPREC() and -e < 2*digits::I then
            g := normalize10(g,l+e+OUTPREC())
            m := g.mantissa; e := g.exponent
      s := convert(m)@S; n := #s; o := e+n
      p := if OUTPREC() = -1 then n::I else OUTPREC()
      t:S
      if e >= 0 then
         s := concat(s, new(e::N, zero))
         t := ""
      else if o <= 0 then
         t := concat(new((-o)::N,zero), s)
         s := "0"
      else
         t := s(o + minIndex s .. n + minIndex s - 1)
         s := s(minIndex s .. o + minIndex s - 1)
      n := #t
      if OUTPREC() = -1 then
         t := rightTrim(t,zero)
         if t = "" then t := "0"
      else if n > p then t := t(minIndex t .. p + minIndex t- 1)
                    else t := concat(t, new((p-n)::N,zero))
      concat(padFromRight s, concat(".", padFromLeft t))

   floating f ==
      zero? f => "0.0"
      negative? f => concat("-", floating abs f)
      t:S := if zero? SPACING() then "E" else " E "
      zero? exponent f =>
        s := convert(mantissa f)@S
        concat ["0.", padFromLeft s, t, convert(#s)@S]
      -- base conversion to decimal rounded to the requested precision
      d := if OUTPREC() = -1 then digits::I else OUTPREC()
      g := convert10(f,d); m := g.mantissa; e := g.exponent
      -- I'm assuming that length10 m = # s given n > 0
      s := convert(m)@S; n := #s; o := e+n
      s := padFromLeft s
      concat ["0.", s, t, convert(o)@S]

   general(f) ==
      zero? f => "0.0"
      negative? f => concat("-", general abs f)
      d := if OUTPREC() = -1 then digits::I else OUTPREC()
      zero? exponent f =>
        d := d + 1
        s := convert(mantissa f)@S
        OUTPREC() ^= -1 and (e := #s) > d =>
          t:S := if zero? SPACING() then "E" else " E "
          concat ["0.", padFromLeft s, t, convert(e)@S]
        padFromRight concat(s, ".0")
      -- base conversion to decimal rounded to the requested precision
      g := convert10(f,d); m := g.mantissa; e := g.exponent
      -- I'm assuming that length10 m = # s given n > 0
      s := convert(m)@S; n := #s; o := n + e
      -- Note: at least one digit is displayed after the decimal point
      -- and trailing zeroes after the decimal point are dropped
      if o > 0 and o <= max(n,d) then
         -- fixed format: add trailing zeroes before the decimal point
         if o > n then s := concat(s, new((o-n)::N,zero))
         t := rightTrim(s(o + minIndex s .. n + minIndex s - 1), zero)
         if t = "" then t := "0" else t := padFromLeft t
         s := padFromRight s(minIndex s .. o + minIndex s - 1)
         concat(s, concat(".", t))
      else if o <= 0 and o >= -5 then
         -- fixed format: up to 5 leading zeroes after the decimal point
         concat("0.",padFromLeft concat(new((-o)::N,zero),rightTrim(s,zero)))
      else
         -- print using E format written  0.mantissa E exponent
         t := padFromLeft rightTrim(s,zero)
         s := if zero? SPACING() then "E" else " E "
         concat ["0.", t, s, convert(e+n)@S]

   outputSpacing n == SPACING() := n

   outputFixed() == (OUTMODE() := "fixed"; OUTPREC() := -1)

   outputFixed n == (OUTMODE() := "fixed"; OUTPREC() := n::I)

   outputGeneral() == (OUTMODE() := "general"; OUTPREC() := -1)

   outputGeneral n == (OUTMODE() := "general"; OUTPREC() := n::I)

   outputFloating() == (OUTMODE() := "floating"; OUTPREC() := -1)

   outputFloating n == (OUTMODE() := "floating"; OUTPREC() := n::I)

   convert(f):S ==
      b:Integer :=
        OUTPREC() = -1 and not zero? f =>
          bits(length(abs mantissa f)::PositiveInteger)
        0
      s :=
        OUTMODE() = "fixed" => fixed f
        OUTMODE() = "floating" => floating f
        OUTMODE() = "general" => general f
        empty()$String
      if b > 0 then bits(b::PositiveInteger)
      s = empty()$String => error "bad output mode"
      s

   coerce(f):OutputForm ==
     f >= 0 => message(convert(f)@S)
     - (coerce(-f)@OutputForm)

   convert(f):InputForm ==
     convert [convert("float"::Symbol), convert mantissa f,
              convert exponent f, convert base()]$List(InputForm)

   -- Conversion routines

   convert(x:%):Float == x pretend Float

   convert(x:%):SF == makeSF(x.mantissa,x.exponent)$Lisp

   coerce(x:%):SF == convert(x)@SF

   convert(sf:SF):% == float(mantissa sf,exponent sf,base()$SF)

   retract(f:%):RN == rationalApproximation(f,(bits()-1)::N,BASE)

   retractIfCan(f:%):Union(RN, "failed") ==
     rationalApproximation(f,(bits()-1)::N,BASE)

   retract(f:%):I ==
     (f = (n := wholePart f)::%) => n
     error "Not an integer"

   retractIfCan(f:%):Union(I, "failed") ==
     (f = (n := wholePart f)::%) => n
     "failed"

   rationalApproximation(f,d) == rationalApproximation(f,d,10)

   rationalApproximation(f,d,b) ==
      t: Integer
      nu := f.mantissa; ex := f.exponent
      if ex >= 0 then return ((nu*BASE**(ex::N))/1)
      de := BASE**((-ex)::N)
      if b < 2 then error "base must be > 1"
      tol := b**d
      s := nu; t := de
      p0,p1,q0,q1 : Integer
      p0 := 0; p1 := 1; q0 := 1; q1 := 0
      repeat
         (q,r) := divide(s, t)
         p2 := q*p1+p0
         q2 := q*q1+q0
         if r = 0 or tol*abs(nu*q2-de*p2) < de*abs(p2) then return (p2/q2)
         (p0,p1) := (p1,p2)
         (q0,q1) := (q1,q2)
         (s,t) := (t,r)