/usr/share/axiom-20170501/src/algebra/FLOAT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 | )abbrev domain FLOAT Float
++ Author: Michael Monagan
++ Date Created: December 1987
++ Change History: 19 Jun 1990
++ References:
++ Corl00 According to Abramowitz and Stegun or arccoth needn't be Uncouth
++ Fate01a A Critique of OpenMath and Thoughts on Encoding Mathematics
++ Description:
++ \spadtype{Float} implements arbitrary precision floating point arithmetic.
++ The number of significant digits of each operation can be set
++ to an arbitrary value (the default is 20 decimal digits).
++ The operation \spad{float(mantissa,exponent,base)} for integer
++ \spad{mantissa}, \spad{exponent} specifies the number
++ \spad{mantissa * base ** exponent}
++ The underlying representation for floats is binary
++ not decimal. The implications of this are described below.
++
++ The model adopted is that arithmetic operations are rounded to
++ to nearest unit in the last place, that is, accurate to within
++ \spad{2**(-bits)}. Also, the elementary functions and constants are
++ accurate to one unit in the last place.
++ A float is represented as a record of two integers, the mantissa
++ and the exponent. The base of the representation is binary, hence
++ a \spad{Record(m:mantissa,e:exponent)} represents the number
++ \spad{m * 2 ** e}.
++ Though it is not assumed that the underlying integers are represented
++ with a binary base, the code will be most efficient when this is the
++ the case (this is true in most implementations of Lisp).
++ The decision to choose the base to be binary has some unfortunate
++ consequences. First, decimal numbers like 0.3 cannot be represented
++ exactly. Second, there is a further loss of accuracy during
++ conversion to decimal for output. To compensate for this, if d digits
++ of precision are specified, \spad{1 + ceiling(log2(10^d))} bits are used.
++ Two numbers that are displayed identically may therefore be
++ not equal. On the other hand, a significant efficiency loss would
++ be incurred if we chose to use a decimal base when the underlying
++ integer base is binary.
++
++ Algorithms used:
++ For the elementary functions, the general approach is to apply
++ identities so that the taylor series can be used, and, so
++ that it will converge within \spad{O( sqrt n )} steps. For example,
++ using the identity \spad{exp(x) = exp(x/2)**2}, we can compute
++ \spad{exp(1/3)} to n digits of precision as follows. We have
++ \spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}.
++ The taylor series will converge in less than sqrt n steps and the
++ exponentiation requires sqrt n multiplications for a total of
++ \spad{2 sqrt n} multiplications. Assuming integer multiplication costs
++ \spad{O( n**2 )} the overall running time is \spad{O( sqrt(n) n**2 )}.
++ This approach is the best known approach for precisions up to
++ about 10,000 digits at which point the methods of Brent
++ which are \spad{O( log(n) n**2 )} become competitive. Note also that
++ summing the terms of the taylor series for the elementary
++ functions is done using integer operations. This avoids the
++ overhead of floating point operations and results in efficient
++ code at low precisions. This implementation makes no attempt
++ to reuse storage, relying on the underlying system to do
++ \spadgloss{garbage collection}. I estimate that the efficiency of this
++ package at low precisions could be improved by a factor of 2
++ if in-place operations were available.
++
++ Running times: in the following, n is the number of bits of precision\br
++ \spad{*}, \spad{/}, \spad{sqrt}, \spad{pi}, \spad{exp1}, \spad{log2},
++ \spad{log10}: \spad{ O( n**2 )} \br
++ \spad{exp}, \spad{log}, \spad{sin}, \spad{atan}: \spad{O(sqrt(n) n**2)}\br
++ The other elementary functions are coded in terms of the ones above.
Float() : SIG == CODE where
B ==> Boolean
I ==> Integer
S ==> String
PI ==> PositiveInteger
RN ==> Fraction Integer
SF ==> DoubleFloat
N ==> NonNegativeInteger
SIG ==> Join(FloatingPointSystem, DifferentialRing, ConvertibleTo String,
OpenMath, CoercibleTo DoubleFloat,
TranscendentalFunctionCategory, ConvertibleTo InputForm) with
_/ : (%, I) -> %
++ x / i computes the division from x by an integer i.
_*_* : (%, %) -> %
++ x ** y computes \spad{exp(y log x)} where \spad{x >= 0}.
normalize : % -> %
++ normalize(x) normalizes x at current precision.
relerror : (%, %) -> I
++ relerror(x,y) computes the absolute value of \spad{x - y} divided by
++ y, when \spad{y \^= 0}.
shift : (%, I) -> %
++ shift(x,n) adds n to the exponent of float x.
rationalApproximation : (%, N) -> RN
++ rationalApproximation(f, n) computes a rational approximation
++ r to f with relative error \spad{< 10**(-n)}.
rationalApproximation : (%, N, N) -> RN
++ rationalApproximation(f, n, b) computes a rational
++ approximation r to f with relative error \spad{< b**(-n)}, that is
++ \spad{|(r-f)/f| < b**(-n)}.
log2 : () -> %
++ log2() returns \spad{ln 2}, \spad{0.6931471805...}.
log10: () -> %
++ log10() returns \spad{ln 10}: \spad{2.3025809299...}.
exp1 : () -> %
++ exp1() returns exp 1: \spad{2.7182818284...}.
atan : (%,%) -> %
++ atan(x,y) computes the arc tangent from x with phase y.
log2 : % -> %
++ log2(x) computes the logarithm for x to base 2.
log10 : % -> %
++ log10(x) computes the logarithm for x to base 10.
convert : SF -> %
++ convert(x) converts a \spadtype{DoubleFloat} x to a \spadtype{Float}.
outputFloating : () -> Void
++ outputFloating() sets the output mode to floating (scientific)
++ notation, \spad{mantissa * 10 exponent} is displayed as
++ \spad{0.mantissa E exponent}.
outputFloating : N -> Void
++ outputFloating(n) sets the output mode to floating (scientific)
++ notation with n significant digits displayed after the decimal point.
outputFixed : () -> Void
++ outputFixed() sets the output mode to fixed point notation;
++ the output will contain a decimal point.
outputFixed : N -> Void
++ outputFixed(n) sets the output mode to fixed point notation,
++ with n digits displayed after the decimal point.
outputGeneral : () -> Void
++ outputGeneral() sets the output mode (default mode) to general
++ notation; numbers will be displayed in either fixed or floating
++ (scientific) notation depending on the magnitude.
outputGeneral : N -> Void
++ outputGeneral(n) sets the output mode to general notation
++ with n significant digits displayed.
outputSpacing : N -> Void
++ outputSpacing(n) inserts space after n (default 10) digits on output;
++ outputSpacing(0) means no spaces are inserted.
arbitraryPrecision
arbitraryExponent
CODE ==> add
BASE ==> 2
BITS:Reference(PI) := ref 68 -- 20 digits
LENGTH ==> INTEGER_-LENGTH$Lisp
ISQRT ==> approxSqrt$IntegerRoots(I)
Rep := Record( mantissa:I, exponent:I )
StoredConstant ==> Record( precision:PI, value:% )
UCA ==> Record( unit:%, coef:%, associate:% )
inc ==> increasePrecision
dec ==> decreasePrecision
-- local utility operations
shift2 : (I,I) -> I -- WSP: fix bug in shift
times : (%,%) -> % -- multiply x and y with no rounding
itimes: (I,%) -> % -- multiply by a small integer
chop: (%,PI) -> % -- chop x at p bits of precision
dvide: (%,%) -> % -- divide x by y with no rounding
square: (%,I) -> % -- repeated squaring with chopping
power: (%,I) -> % -- x ** n with chopping
plus: (%,%) -> % -- addition with no rounding
sub: (%,%) -> % -- subtraction with no rounding
negate: % -> % -- negation with no rounding
ceillog10base2: PI -> PI -- rational approximation
floorln2: PI -> PI -- rational approximation
atanSeries: % -> % -- atan(x) by taylor series |x| < 1/2
atanInverse: I -> % -- atan(1/n) for n an integer > 1
expInverse: I -> % -- exp(1/n) for n an integer
expSeries: % -> % -- exp(x) by taylor series |x| < 1/2
logSeries: % -> % -- log(x) by taylor series 1/2 < x < 2
sinSeries: % -> % -- sin(x) by taylor series |x| < 1/2
cosSeries: % -> % -- cos(x) by taylor series |x| < 1/2
piRamanujan: () -> % -- pi using Ramanujans series
writeOMFloat(dev: OpenMathDevice, x: %): Void ==
OMputApp(dev)
OMputSymbol(dev, "bigfloat1", "bigfloat")
OMputInteger(dev, mantissa x)
OMputInteger(dev, 2)
OMputInteger(dev, exponent x)
OMputEndApp(dev)
OMwrite(x: %): String ==
s: String := ""
sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
OMputObject(dev)
writeOMFloat(dev, x)
OMputEndObject(dev)
OMclose(dev)
s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
s
OMwrite(x: %, wholeObj: Boolean): String ==
s: String := ""
sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
if wholeObj then
OMputObject(dev)
writeOMFloat(dev, x)
if wholeObj then
OMputEndObject(dev)
OMclose(dev)
s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
s
OMwrite(dev: OpenMathDevice, x: %): Void ==
OMputObject(dev)
writeOMFloat(dev, x)
OMputEndObject(dev)
OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
if wholeObj then
OMputObject(dev)
writeOMFloat(dev, x)
if wholeObj then
OMputEndObject(dev)
shift2(x,y) == sign(x)*shift(sign(x)*x,y)
asin x ==
zero? x => 0
negative? x => -asin(-x)
(x = 1) => pi()/2
x > 1 => error "asin: argument > 1 in magnitude"
inc 5; r := atan(x/sqrt(sub(1,times(x,x)))); dec 5
normalize r
acos x ==
zero? x => pi()/2
negative? x => (inc 3; r := pi()-acos(-x); dec 3; normalize r)
(x = 1) => 0
x > 1 => error "acos: argument > 1 in magnitude"
inc 5; r := atan(sqrt(sub(1,times(x,x)))/x); dec 5
normalize r
atan(x,y) ==
x = 0 =>
y > 0 => pi()/2
y < 0 => -pi()/2
0
-- Only count on first quadrant being on principal branch.
theta := atan abs(y/x)
if x < 0 then theta := pi() - theta
if y < 0 then theta := - theta
theta
atan x ==
zero? x => 0
negative? x => -atan(-x)
if x > 1 then
inc 4
r := if zero? fractionPart x and x < [bits(),0] _
then atanInverse wholePart x
else atan(1/x)
r := pi/2 - r
dec 4
return normalize r
-- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
-- by using the formula atan(x) = 2*atan(x/(1+sqrt(1+x**2)))
k := ISQRT (bits()-100)::I quo 5
k := max(0,2 + k + order x)
inc(2*k)
for i in 1..k repeat x := x/(1+sqrt(1+x*x))
t := atanSeries x
dec(2*k)
t := shift(t,k)
normalize t
atanSeries x ==
-- atan(x) = x (1 - x**2/3 + x**4/5 - x**6/7 + ...) |x| < 1
p := bits() + LENGTH bits() + 2
s:I := d:I := shift(1,p)
y := times(x,x)
t := m := - shift2(y.mantissa,y.exponent+p)
for i in 3.. by 2 while t ^= 0 repeat
s := s + t quo i
t := (m * t) quo d
x * [s,-p]
atanInverse n ==
-- compute atan(1/n) for an integer n > 1
-- atan n = 1/n - 1/n**3/3 + 1/n**5/4 - ...
-- pi = 16 atan(1/5) - 4 atan(1/239)
n2 := -n*n
e:I := bits() + LENGTH bits() + LENGTH n + 1
s:I := shift(1,e) quo n
t:I := s quo n2
for k in 3.. by 2 while t ^= 0 repeat
s := s + t quo k
t := t quo n2
normalize [s,-e]
sin x ==
s := sign x; x := abs x; p := bits(); inc 4
if x > [6,0] then (inc p; x := 2*pi*fractionPart(x/pi/2); bits p)
if x > [3,0] then (inc p; s := -s; x := x - pi; bits p)
if x > [3,-1] then (inc p; x := pi - x; dec p)
-- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
-- by using the formula sin(3*x/3) = 3 sin(x/3) - 4 sin(x/3)**3
-- the running time is O( sqrt p M(p) ) assuming |x| < 1
k := ISQRT (bits()-100)::I quo 4
k := max(0,2 + k + order x)
if k > 0 then (inc k; x := x / 3**k::N)
r := sinSeries x
for i in 1..k repeat r := itimes(3,r)-shift(r**3,2)
bits p
s * r
sinSeries x ==
-- sin(x) = x (1 - x**2/3! + x**4/5! - x**6/7! + ... |x| < 1/2
p := bits() + LENGTH bits() + 2
y := times(x,x)
s:I := d:I := shift(1,p)
m:I := - shift2(y.mantissa,y.exponent+p)
t:I := m quo 6
for i in 4.. by 2 while t ^= 0 repeat
s := s + t
t := (m * t) quo (i*(i+1))
t := t quo d
x * [s,-p]
cos x ==
s:I := 1; x := abs x; p := bits(); inc 4
if x > [6,0] then (inc p; x := 2*pi*fractionPart(x/pi/2); dec p)
if x > [3,0] then (inc p; s := -s; x := x-pi; dec p)
if x > [1,0] then
-- take care of the accuracy problem near pi/2
inc p; x := pi/2-x; bits p; x := normalize x
return (s * sin x)
-- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
-- by using the formula cos(2*x/2) = 2 cos(x/2)**2 - 1
-- the running time is O( sqrt p M(p) ) assuming |x| < 1
k := ISQRT (bits()-100)::I quo 3
k := max(0,2 + k + order x)
-- need to increase precision by more than k, otherwise recursion
-- causes loss of accuracy.
-- Michael Monagan suggests adding a factor of log(k)
if k > 0 then (inc(k+length(k)**2); x := shift(x,-k))
r := cosSeries x
for i in 1..k repeat r := shift(r*r,1)-1
bits p
s * r
cosSeries x ==
-- cos(x) = 1 - x**2/2! + x**4/4! - x**6/6! + ... |x| < 1/2
p := bits() + LENGTH bits() + 1
y := times(x,x)
s:I := d:I := shift(1,p)
m:I := - shift2(y.mantissa,y.exponent+p)
t:I := m quo 2
for i in 3.. by 2 while t ^= 0 repeat
s := s + t
t := (m * t) quo (i*(i+1))
t := t quo d
normalize [s,-p]
tan x ==
s := sign x; x := abs x; p := bits(); inc 6
if x > [3,0] then (inc p; x := pi()*fractionPart(x/pi()); dec p)
if x > [3,-1] then (inc p; x := pi()-x; s := -s; dec p)
if x > 1 then (c := cos x; t := sqrt(1-c*c)/c)
else (c := sin x; t := c/sqrt(1-c*c))
bits p
s * t
P:StoredConstant := [1,[1,2]]
pi() ==
-- We use Ramanujan's identity to compute pi.
-- The running time is quadratic in the precision.
-- This is about twice as fast as Machin's identity on Lisp/VM
-- pi = 16 atan(1/5) - 4 atan(1/239)
bits() <= P.precision => normalize P.value
(P := [bits(), piRamanujan()]) value
piRamanujan() ==
-- Ramanujans identity for 1/pi
-- Reference: Shanks and Wrench, Math Comp, 1962
-- "Calculation of pi to 100,000 Decimals".
n := bits() + LENGTH bits() + 11
t:I := shift(1,n) quo 882
d:I := 4*882**2
s:I := 0
for i in 2.. by 2 for j in 1123.. by 21460 while t ^= 0 repeat
s := s + j*t
m := -(i-1)*(2*i-1)*(2*i-3)
t := (m*t) quo (d*i**3)
1 / [s,-n-2]
sinh x ==
zero? x => 0
lost:I := max(- order x,0)
2*lost > bits() => x
inc(5+lost); e := exp x; s := (e-1/e)/2; dec(5+lost)
normalize s
cosh x ==
(inc 5; e := exp x; c := (e+1/e)/2; dec 5; normalize c)
tanh x ==
zero? x => 0
lost:I := max(- order x,0)
2*lost > bits() => x
inc(6+lost); e := exp x; e := e*e; t := (e-1)/(e+1); dec(6+lost)
normalize t
asinh x ==
p := min(0,order x)
if zero? x or 2*p < -bits() then return x
inc(5-p); r := log(x+sqrt(1+x*x)); dec(5-p)
normalize r
acosh x ==
if x < 1 then error "invalid argument to acosh"
inc 5; r := log(x+sqrt(sub(times(x,x),1))); dec 5
normalize r
atanh x ==
if x > 1 or x < -1 then error "invalid argument to atanh"
p := min(0,order x)
if zero? x or 2*p < -bits() then return x
inc(5-p); r := log((x+1)/(1-x))/2; dec(5-p)
normalize r
log x ==
negative? x => error "negative log"
zero? x => error "log 0 generated"
p := bits(); inc 5
-- apply log(x) = n log 2 + log(x/2**n) so that 1/2 < x < 2
if (n := order x) < 0 then n := n+1
l := if n = 0 then 0 else (x := shift(x,-n); n * log2)
-- speed the series convergence by finding m and k such that
-- | exp(m/2**k) x - 1 | < 1 / 2 ** O(sqrt p)
-- write log(exp(m/2**k) x) as m/2**k + log x
k := ISQRT (p-100)::I quo 3
if k > 1 then
k := max(1,k+order(x-1))
inc k
ek := expInverse (2**k::N)
dec(p quo 2); m := order square(x,k); inc(p quo 2)
m := (6847196937 * m) quo 9878417065 -- m := m log 2
x := x * ek ** (-m)
l := l + [m,-k]
l := l + logSeries x
bits p
normalize l
logSeries x ==
-- log(x) = 2 y (1 + y**2/3 + y**4/5 ...) for y = (x-1) / (x+1)
-- given 1/2 < x < 2 on input we have -1/3 < y < 1/3
p := bits() + (g := LENGTH bits() + 3)
inc g; y := (x-1)/(x+1); dec g
s:I := d:I := shift(1,p)
z := times(y,y)
t := m := shift2(z.mantissa,z.exponent+p)
for i in 3.. by 2 while t ^= 0 repeat
s := s + t quo i
t := m * t quo d
y * [s,1-p]
L2:StoredConstant := [1,1]
log2() ==
-- log x = 2 * sum( ((x-1)/(x+1))**(2*k+1)/(2*k+1), k=1.. )
-- log 2 = 2 * sum( 1/9**k / (2*k+1), k=0..n ) / 3
n := bits() :: N
n <= L2.precision => normalize L2.value
n := n + LENGTH n + 3 -- guard bits
s:I := shift(1,n+1) quo 3
t:I := s quo 9
for k in 3.. by 2 while t ^= 0 repeat
s := s + t quo k
t := t quo 9
L2 := [bits(),[s,-n]]
normalize L2.value
L10:StoredConstant := [1,[1,1]]
log10() ==
-- log x = 2 * sum( ((x-1)/(x+1))**(2*k+1)/(2*k+1), k=0.. )
-- log 5/4 = 2 * sum( 1/81**k / (2*k+1), k=0.. ) / 9
n := bits() :: N
n <= L10.precision => normalize L10.value
n := n + LENGTH n + 5 -- guard bits
s:I := shift(1,n+1) quo 9
t:I := s quo 81
for k in 3.. by 2 while t ^= 0 repeat
s := s + t quo k
t := t quo 81
-- We have log 10 = log 5 + log 2 and log 5/4 = log 5 - 2 log 2
inc 2; L10 := [bits(),[s,-n] + 3*log2]; dec 2
normalize L10.value
log2(x) == (inc 2; r := log(x)/log2; dec 2; normalize r)
log10(x) == (inc 2; r := log(x)/log10; dec 2; normalize r)
exp(x) ==
-- exp(n+x) = exp(1)**n exp(x) for n such that |x| < 1
p := bits(); inc 5; e1:% := 1
if (n := wholePart x) ^= 0 then
inc LENGTH n; e1 := exp1 ** n; dec LENGTH n
x := fractionPart x
if zero? x then (bits p; return normalize e1)
-- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
-- by repeated use of the formula exp(2*x/2) = exp(x/2)**2
-- results in an overall running time of O( sqrt p M(p) )
k := ISQRT (p-100)::I quo 3
k := max(0,2 + k + order x)
if k > 0 then (inc k; x := shift(x,-k))
e := expSeries x
if k > 0 then e := square(e,k)
bits p
e * e1
expSeries x ==
-- exp(x) = 1 + x + x**2/2 + ... + x**i/i! valid for all x
p := bits() + LENGTH bits() + 1
s:I := d:I := shift(1,p)
t:I := n:I := shift2(x.mantissa,x.exponent+p)
for i in 2.. while t ^= 0 repeat
s := s + t
t := (n * t) quo i
t := t quo d
normalize [s,-p]
expInverse k ==
-- computes exp(1/k) via continued fraction
p0:I := 2*k+1; p1:I := 6*k*p0+1
q0:I := 2*k-1; q1:I := 6*k*q0+1
for i in 10*k.. by 4*k while 2 * LENGTH p0 < bits() repeat
(p0,p1) := (p1,i*p1+p0)
(q0,q1) := (q1,i*q1+q0)
dvide([p1,0],[q1,0])
E:StoredConstant := [1,[1,1]]
exp1() ==
if bits() > E.precision then E := [bits(),expInverse 1]
normalize E.value
sqrt x ==
negative? x => error "negative sqrt"
m := x.mantissa; e := x.exponent
l := LENGTH m
p := 2 * bits() - l + 2
if odd?(e-l) then p := p - 1
i := shift2(x.mantissa,p)
-- ISQRT uses a variable precision newton iteration
i := ISQRT i
normalize [i,(e-p) quo 2]
bits() == BITS()
bits(n) == (t := bits(); BITS() := n; t)
precision() == bits()
precision(n) == bits(n)
increasePrecision n == (b := bits(); bits((b + n)::PI); b)
decreasePrecision n == (b := bits(); bits((b - n)::PI); b)
ceillog10base2 n == ((13301 * n + 4003) quo 4004) :: PI
digits() == max(1,4004 * (bits()-1) quo 13301)::PI
digits(n) == (t := digits(); bits (1 + ceillog10base2 n); t)
order(a) == LENGTH a.mantissa + a.exponent - 1
relerror(a,b) == order((a-b)/b)
0 == [0,0]
1 == [1,0]
base() == BASE
mantissa x == x.mantissa
exponent x == x.exponent
one? a == a = 1
zero? a == zero?(a.mantissa)
negative? a == negative?(a.mantissa)
positive? a == positive?(a.mantissa)
chop(x,p) ==
e : I := LENGTH x.mantissa - p
if e > 0 then x := [shift2(x.mantissa,-e),x.exponent+e]
x
float(m,e) == normalize [m,e]
float(m,e,b) ==
m = 0 => 0
inc 4; r := m * [b,0] ** e; dec 4
normalize r
normalize x ==
m := x.mantissa
m = 0 => 0
e : I := LENGTH m - bits()
if e > 0 then
y := shift2(m,1-e)
if odd? y then
y := (if y>0 then y+1 else y-1) quo 2
if LENGTH y > bits() then
y := y quo 2
e := e+1
else y := y quo 2
x := [y,x.exponent+e]
x
shift(x:%,n:I) == [x.mantissa,x.exponent+n]
x = y ==
order x = order y and sign x = sign y and zero? (x - y)
x < y ==
y.mantissa = 0 => x.mantissa < 0
x.mantissa = 0 => y.mantissa > 0
negative? x and positive? y => true
negative? y and positive? x => false
order x < order y => positive? x
order x > order y => negative? x
negative? (x-y)
abs x == if negative? x then -x else normalize x
ceiling x ==
if negative? x then return (-floor(-x))
if zero? fractionPart x then x else truncate x + 1
wholePart x == shift2(x.mantissa,x.exponent)
floor x == if negative? x then -ceiling(-x) else truncate x
round x == (half := [sign x,-1]; truncate(x + half))
sign x == if x.mantissa < 0 then -1 else 1
truncate x ==
if x.exponent >= 0 then return x
normalize [shift2(x.mantissa,x.exponent),0]
recip(x) == if x=0 then "failed" else 1/x
differentiate x == 0
- x == normalize negate x
negate x == [-x.mantissa,x.exponent]
x + y == normalize plus(x,y)
x - y == normalize plus(x,negate y)
sub(x,y) == plus(x,negate y)
plus(x,y) ==
mx := x.mantissa; my := y.mantissa
mx = 0 => y
my = 0 => x
ex := x.exponent; ey := y.exponent
ex = ey => [mx+my,ex]
de := ex + LENGTH mx - ey - LENGTH my
de > bits()+1 => x
de < -(bits()+1) => y
if ex < ey then (mx,my,ex,ey) := (my,mx,ey,ex)
mw := my + shift2(mx,ex-ey)
[mw,ey]
x:% * y:% == normalize times (x,y)
x:I * y:% ==
if LENGTH x > bits() then normalize [x,0] * y
else normalize [x * y.mantissa,y.exponent]
x:% / y:% == normalize dvide(x,y)
x:% / y:I ==
if LENGTH y > bits() then x / normalize [y,0] else x / [y,0]
inv x == 1 / x
times(x:%,y:%) == [x.mantissa * y.mantissa, x.exponent + y.exponent]
itimes(n:I,y:%) == [n * y.mantissa,y.exponent]
dvide(x,y) ==
ew := LENGTH y.mantissa - LENGTH x.mantissa + bits() + 1
mw := shift2(x.mantissa,ew) quo y.mantissa
ew := x.exponent - y.exponent - ew
[mw,ew]
square(x,n) ==
ma := x.mantissa; ex := x.exponent
for k in 1..n repeat
ma := ma * ma; ex := ex + ex
l:I := bits()::I - LENGTH ma
ma := shift2(ma,l); ex := ex - l
[ma,ex]
power(x,n) ==
y:% := 1; z:% := x
repeat
if odd? n then y := chop( times(y,z), bits() )
if (n := n quo 2) = 0 then return y
z := chop( times(z,z), bits() )
x:% ** y:% ==
x = 0 =>
y = 0 => error "0**0 is undefined"
y < 0 => error "division by 0"
y > 0 => 0
y = 0 => 1
y = 1 => x
x = 1 => 1
p := abs order y + 5
inc p; r := exp(y*log(x)); dec p
normalize r
x:% ** r:RN ==
x = 0 =>
r = 0 => error "0**0 is undefined"
r < 0 => error "division by 0"
r > 0 => 0
r = 0 => 1
r = 1 => x
x = 1 => 1
n := numer r
d := denom r
negative? x =>
odd? d =>
odd? n => return -((-x)**r)
return ((-x)**r)
error "negative root"
if d = 2 then
inc LENGTH n; y := sqrt(x); y := y**n; dec LENGTH n
return normalize y
y := [n,0]/[d,0]
x ** y
x:% ** n:I ==
x = 0 =>
n = 0 => error "0**0 is undefined"
n < 0 => error "division by 0"
n > 0 => 0
n = 0 => 1
n = 1 => x
x = 1 => 1
p := bits()
bits(p + LENGTH n + 2)
y := power(x,abs n)
if n < 0 then y := dvide(1,y)
bits p
normalize y
-- Utility routines for conversion to decimal
ceilLength10: I -> I
chop10: (%,I) -> %
convert10:(%,I) -> %
floorLength10: I -> I
length10: I -> I
normalize10: (%,I) -> %
quotient10: (%,%,I) -> %
power10: (%,I,I) -> %
times10: (%,%,I) -> %
convert10(x,d) ==
m := x.mantissa; e := x.exponent
--!! deal with bits here
b := bits(); (q,r) := divide(abs e, b)
b := 2**b::N; r := 2**r::N
-- compute 2**e = b**q * r
h := power10([b,0],q,d+5)
h := chop10([r*h.mantissa,h.exponent],d+5)
if e < 0 then h := quotient10([m,0],h,d)
else times10([m,0],h,d)
ceilLength10 n == 146 * LENGTH n quo 485 + 1
floorLength10 n == 643 * LENGTH n quo 2136
length10 n ==
ln := LENGTH(n:=abs n)
upper := 76573 * ln quo 254370
lower := 21306 * (ln-1) quo 70777
upper = lower => upper + 1
n := n quo (10**lower::N)
while n >= 10 repeat
n:= n quo 10
lower := lower + 1
lower + 1
chop10(x,p) ==
e : I := floorLength10 x.mantissa - p
if e > 0 then x := [x.mantissa quo 10**e::N,x.exponent+e]
x
normalize10(x,p) ==
ma := x.mantissa
ex := x.exponent
e : I := length10 ma - p
if e > 0 then
ma := ma quo 10**(e-1)::N
ex := ex + e
(ma,r) := divide(ma, 10)
if r > 4 then
ma := ma + 1
if ma = 10**p::N then (ma := 1; ex := ex + p)
[ma,ex]
times10(x,y,p) == normalize10(times(x,y),p)
quotient10(x,y,p) ==
ew := floorLength10 y.mantissa - ceilLength10 x.mantissa + p + 2
if ew < 0 then ew := 0
mw := (x.mantissa * 10**ew::N) quo y.mantissa
ew := x.exponent - y.exponent - ew
normalize10([mw,ew],p)
power10(x,n,d) ==
x = 0 => 0
n = 0 => 1
n = 1 => x
x = 1 => 1
p:I := d + LENGTH n + 1
e:I := n
y:% := 1
z:% := x
repeat
if odd? e then y := chop10(times(y,z),p)
if (e := e quo 2) = 0 then return y
z := chop10(times(z,z),p)
--------------------------------
-- Output routines for Floats --
--------------------------------
zero ==> char("0")
separator ==> space()$Character
SPACING : Reference(N) := ref 10
OUTMODE : Reference(S) := ref "general"
OUTPREC : Reference(I) := ref(-1)
fixed : % -> S
floating : % -> S
general : % -> S
padFromLeft(s:S):S ==
zero? SPACING() => s
n:I := #s - 1
t := new( (n + 1 + n quo SPACING()) :: N , separator )
for i in 0..n for j in minIndex t .. repeat
t.j := s.(i + minIndex s)
if (i+1) rem SPACING() = 0 then j := j+1
t
padFromRight(s:S):S ==
SPACING() = 0 => s
n:I := #s - 1
t := new( (n + 1 + n quo SPACING()) :: N , separator )
for i in n..0 by -1 for j in maxIndex t .. by -1 repeat
t.j := s.(i + minIndex s)
if (n-i+1) rem SPACING() = 0 then j := j-1
t
fixed f ==
d := if OUTPREC() = -1 then digits::I else OUTPREC()
dpos:N:= if (d > 0) then d::N else 1::N
zero? f =>
OUTPREC() = -1 => "0.0"
concat("0",concat(".",padFromLeft new(dpos,zero)))
zero? exponent f =>
concat(padFromRight convert(mantissa f)@S,
concat(".",padFromLeft new(dpos,zero)))
negative? f => concat("-", fixed abs f)
bl := LENGTH(f.mantissa) + f.exponent
dd :=
OUTPREC() = -1 => d
bl > 0 => (146*bl) quo 485 + 1 + d
d
g := convert10(abs f,dd)
m := g.mantissa
e := g.exponent
if OUTPREC() ^= -1 then
-- round g to OUTPREC digits after the decimal point
l := length10 m
if -e > OUTPREC() and -e < 2*digits::I then
g := normalize10(g,l+e+OUTPREC())
m := g.mantissa; e := g.exponent
s := convert(m)@S; n := #s; o := e+n
p := if OUTPREC() = -1 then n::I else OUTPREC()
t:S
if e >= 0 then
s := concat(s, new(e::N, zero))
t := ""
else if o <= 0 then
t := concat(new((-o)::N,zero), s)
s := "0"
else
t := s(o + minIndex s .. n + minIndex s - 1)
s := s(minIndex s .. o + minIndex s - 1)
n := #t
if OUTPREC() = -1 then
t := rightTrim(t,zero)
if t = "" then t := "0"
else if n > p then t := t(minIndex t .. p + minIndex t- 1)
else t := concat(t, new((p-n)::N,zero))
concat(padFromRight s, concat(".", padFromLeft t))
floating f ==
zero? f => "0.0"
negative? f => concat("-", floating abs f)
t:S := if zero? SPACING() then "E" else " E "
zero? exponent f =>
s := convert(mantissa f)@S
concat ["0.", padFromLeft s, t, convert(#s)@S]
-- base conversion to decimal rounded to the requested precision
d := if OUTPREC() = -1 then digits::I else OUTPREC()
g := convert10(f,d); m := g.mantissa; e := g.exponent
-- I'm assuming that length10 m = # s given n > 0
s := convert(m)@S; n := #s; o := e+n
s := padFromLeft s
concat ["0.", s, t, convert(o)@S]
general(f) ==
zero? f => "0.0"
negative? f => concat("-", general abs f)
d := if OUTPREC() = -1 then digits::I else OUTPREC()
zero? exponent f =>
d := d + 1
s := convert(mantissa f)@S
OUTPREC() ^= -1 and (e := #s) > d =>
t:S := if zero? SPACING() then "E" else " E "
concat ["0.", padFromLeft s, t, convert(e)@S]
padFromRight concat(s, ".0")
-- base conversion to decimal rounded to the requested precision
g := convert10(f,d); m := g.mantissa; e := g.exponent
-- I'm assuming that length10 m = # s given n > 0
s := convert(m)@S; n := #s; o := n + e
-- Note: at least one digit is displayed after the decimal point
-- and trailing zeroes after the decimal point are dropped
if o > 0 and o <= max(n,d) then
-- fixed format: add trailing zeroes before the decimal point
if o > n then s := concat(s, new((o-n)::N,zero))
t := rightTrim(s(o + minIndex s .. n + minIndex s - 1), zero)
if t = "" then t := "0" else t := padFromLeft t
s := padFromRight s(minIndex s .. o + minIndex s - 1)
concat(s, concat(".", t))
else if o <= 0 and o >= -5 then
-- fixed format: up to 5 leading zeroes after the decimal point
concat("0.",padFromLeft concat(new((-o)::N,zero),rightTrim(s,zero)))
else
-- print using E format written 0.mantissa E exponent
t := padFromLeft rightTrim(s,zero)
s := if zero? SPACING() then "E" else " E "
concat ["0.", t, s, convert(e+n)@S]
outputSpacing n == SPACING() := n
outputFixed() == (OUTMODE() := "fixed"; OUTPREC() := -1)
outputFixed n == (OUTMODE() := "fixed"; OUTPREC() := n::I)
outputGeneral() == (OUTMODE() := "general"; OUTPREC() := -1)
outputGeneral n == (OUTMODE() := "general"; OUTPREC() := n::I)
outputFloating() == (OUTMODE() := "floating"; OUTPREC() := -1)
outputFloating n == (OUTMODE() := "floating"; OUTPREC() := n::I)
convert(f):S ==
b:Integer :=
OUTPREC() = -1 and not zero? f =>
bits(length(abs mantissa f)::PositiveInteger)
0
s :=
OUTMODE() = "fixed" => fixed f
OUTMODE() = "floating" => floating f
OUTMODE() = "general" => general f
empty()$String
if b > 0 then bits(b::PositiveInteger)
s = empty()$String => error "bad output mode"
s
coerce(f):OutputForm ==
f >= 0 => message(convert(f)@S)
- (coerce(-f)@OutputForm)
convert(f):InputForm ==
convert [convert("float"::Symbol), convert mantissa f,
convert exponent f, convert base()]$List(InputForm)
-- Conversion routines
convert(x:%):Float == x pretend Float
convert(x:%):SF == makeSF(x.mantissa,x.exponent)$Lisp
coerce(x:%):SF == convert(x)@SF
convert(sf:SF):% == float(mantissa sf,exponent sf,base()$SF)
retract(f:%):RN == rationalApproximation(f,(bits()-1)::N,BASE)
retractIfCan(f:%):Union(RN, "failed") ==
rationalApproximation(f,(bits()-1)::N,BASE)
retract(f:%):I ==
(f = (n := wholePart f)::%) => n
error "Not an integer"
retractIfCan(f:%):Union(I, "failed") ==
(f = (n := wholePart f)::%) => n
"failed"
rationalApproximation(f,d) == rationalApproximation(f,d,10)
rationalApproximation(f,d,b) ==
t: Integer
nu := f.mantissa; ex := f.exponent
if ex >= 0 then return ((nu*BASE**(ex::N))/1)
de := BASE**((-ex)::N)
if b < 2 then error "base must be > 1"
tol := b**d
s := nu; t := de
p0,p1,q0,q1 : Integer
p0 := 0; p1 := 1; q0 := 1; q1 := 0
repeat
(q,r) := divide(s, t)
p2 := q*p1+p0
q2 := q*q1+q0
if r = 0 or tol*abs(nu*q2-de*p2) < de*abs(p2) then return (p2/q2)
(p0,p1) := (p1,p2)
(q0,q1) := (q1,q2)
(s,t) := (t,r)
|