/usr/share/axiom-20170501/src/algebra/FORMULA.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | )abbrev domain FORMULA ScriptFormulaFormat
++ Author: Robert S. Sutor
++ Date Created: 1987 through 1990
++ References:
++ SCRIPT Mathematical Formula Formatter User's Guide, SH20-6453,
++ IBM Corporation, Publishing Systems Information Development,
++ Dept. G68, P.O. Box 1900, Boulder, Colorado, USA 80301-9191.
++ Description:
++ \spadtype{ScriptFormulaFormat} provides a coercion from
++ \spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format.
++ The basic SCRIPT formula format object consists of three parts: a
++ prologue, a formula part and an epilogue. The functions
++ \spadfun{prologue}, \spadfun{formula} and \spadfun{epilogue}
++ extract these parts, respectively. The central parts of the expression
++ go into the formula part. The other parts can be set
++ (\spadfun{setPrologue!}, \spadfun{setEpilogue!}) so that contain the
++ appropriate tags for printing. For example, the prologue and
++ epilogue might simply contain ":df." and ":edf." so that the
++ formula section will be printed in display math mode.
ScriptFormulaFormat() : SIG == CODE where
E ==> OutputForm
I ==> Integer
L ==> List
S ==> String
SIG ==> SetCategory with
coerce : E -> %
++ coerce(o) changes o in the standard output format to
++ SCRIPT formula format.
convert : (E,I) -> %
++ convert(o,step) changes o in standard output format to
++ SCRIPT formula format and also adds the given step number.
++ This is useful if you want to create equations with given numbers
++ or have the equation numbers correspond to the interpreter step
++ numbers.
display : (%, I) -> Void
++ display(t,width) outputs the formatted code t so that each
++ line has length less than or equal to \spadvar{width}.
display : % -> Void
++ display(t) outputs the formatted code t so that each
++ line has length less than or equal to the value set by
++ the system command \spadsyscom{set output length}.
epilogue : % -> L S
++ epilogue(t) extracts the epilogue section of a formatted object t.
formula : % -> L S
++ formula(t) extracts the formula section of a formatted object t.
new : () -> %
++ new() create a new, empty object. Use \spadfun{setPrologue!},
++ \spadfun{setFormula!} and \spadfun{setEpilogue!} to set the
++ various components of this object.
prologue : % -> L S
++ prologue(t) extracts the prologue section of a formatted object t.
setEpilogue! : (%, L S) -> L S
++ setEpilogue!(t,strings) sets the epilogue section of a
++ formatted object t to strings.
setFormula! : (%, L S) -> L S
++ setFormula!(t,strings) sets the formula section of a
++ formatted object t to strings.
setPrologue! : (%, L S) -> L S
++ setPrologue!(t,strings) sets the prologue section of a
++ formatted object t to strings.
CODE ==> add
import OutputForm
import Character
import Integer
import List OutputForm
import List String
Rep := Record(prolog : L S, formula : L S, epilog : L S)
-- local variables declarations and definitions
expr: E
prec,opPrec: I
str: S
blank : S := " @@ "
maxPrec : I := 1000000
minPrec : I := 0
splitChars : S := " <>[](){}+*=,-%"
unaryOps : L S := ["-","^"]$(L S)
unaryPrecs : L I := [700,260]$(L I)
-- the precedence of / in the following is relatively low because
-- the bar obviates the need for parentheses.
binaryOps : L S := ["+->","|","**","/","<",">","=","OVER"]$(L S)
binaryPrecs : L I := [0,0,900, 700,400,400,400, 700]$(L I)
naryOps : L S := ["-","+","*",blank,",",";"," ","ROW","",
" habove "," here "," labove "]$(L S)
naryPrecs : L I := [700,700,800, 800,110,110, 0, 0, 0,
0, 0, 0]$(L I)
naryNGOps : L S := nil$(L S)
plexOps : L S := ["SIGMA","PI","INTSIGN","INDEFINTEGRAL"]$(L S)
plexPrecs : L I := [ 700, 800, 700, 700]$(L I)
specialOps : L S := ["MATRIX","BRACKET","BRACE","CONCATB", _
"AGGLST","CONCAT","OVERBAR","ROOT","SUB", _
"SUPERSUB","ZAG","AGGSET","SC","PAREN"]
-- the next two lists provide translations for some strings for
-- which the formula formatter provides special variables.
specialStrings : L S :=
["5","..."]
specialStringsInFormula : L S :=
[" alpha "," ellipsis "]
-- local function signatures
addBraces: S -> S
addBrackets: S -> S
group: S -> S
formatBinary: (S,L E, I) -> S
formatFunction: (S,L E, I) -> S
formatMatrix: L E -> S
formatNary: (S,L E, I) -> S
formatNaryNoGroup: (S,L E, I) -> S
formatNullary: S -> S
formatPlex: (S,L E, I) -> S
formatSpecial: (S,L E, I) -> S
formatUnary: (S, E, I) -> S
formatFormula: (E,I) -> S
parenthesize: S -> S
precondition: E -> E
postcondition: S -> S
splitLong: (S,I) -> L S
splitLong1: (S,I) -> L S
stringify: E -> S
-- public function definitions
new() : % == [[".eq set blank @",":df."]$(L S),
[""]$(L S), [":edf."]$(L S)]$Rep
coerce(expr : E): % ==
f : % := new()$%
f.formula := [postcondition
formatFormula(precondition expr, minPrec)]$(L S)
f
convert(expr : E, stepNum : I): % ==
f : % := new()$%
f.formula := concat(["<leqno lparen ",string(stepNum)$S,
" rparen>"], [postcondition
formatFormula(precondition expr, minPrec)]$(L S))
f
display(f : %, len : I) ==
s,t : S
for s in f.prolog repeat sayFORMULA(s)$Lisp
for s in f.formula repeat
for t in splitLong(s, len) repeat sayFORMULA(t)$Lisp
for s in f.epilog repeat sayFORMULA(s)$Lisp
void()$Void
display(f : %) ==
display(f, _$LINELENGTH$Lisp pretend I)
prologue(f : %) == f.prolog
formula(f : %) == f.formula
epilogue(f : %) == f.epilog
setPrologue!(f : %, l : L S) == f.prolog := l
setFormula!(f : %, l : L S) == f.formula := l
setEpilogue!(f : %, l : L S) == f.epilog := l
coerce(f : %): E ==
s,t : S
l : L S := nil
for s in f.prolog repeat l := concat(s,l)
for s in f.formula repeat
for t in splitLong(s, (_$LINELENGTH$Lisp pretend Integer) - 4) repeat
l := concat(t,l)
for s in f.epilog repeat l := concat(s,l)
(reverse l) :: E
-- local function definitions
postcondition(str: S): S ==
len : I := #str
len < 4 => str
plus : Character := char "+"
minus: Character := char "-"
for i in 1..(len-1) repeat
if (str.i =$Character plus) and (str.(i+1) =$Character minus)
then setelt(str,i,char " ")$S
str
stringify expr == object2String(expr)$Lisp pretend S
splitLong(str : S, len : I): L S ==
-- this blocks into lines
if len < 20 then len := _$LINELENGTH$Lisp
splitLong1(str, len)
splitLong1(str : S, len : I) ==
l : List S := nil
s : S := ""
ls : I := 0
ss : S
lss : I
for ss in split(str,char " ") repeat
lss := #ss
if ls + lss > len then
l := concat(s,l)$List(S)
s := ""
ls := 0
lss > len => l := concat(ss,l)$List(S)
ls := ls + lss + 1
s := concat(s,concat(ss," ")$S)$S
if ls > 0 then l := concat(s,l)$List(S)
reverse l
group str ==
concat ["<",str,">"]
addBraces str ==
concat ["left lbrace ",str," right rbrace"]
addBrackets str ==
concat ["left lb ",str," right rb"]
parenthesize str ==
concat ["left lparen ",str," right rparen"]
precondition expr ==
outputTran(expr)$Lisp
formatSpecial(op : S, args : L E, prec : I) : S ==
op = "AGGLST" =>
formatNary(",",args,prec)
op = "AGGSET" =>
formatNary(";",args,prec)
op = "CONCATB" =>
formatNary(" ",args,prec)
op = "CONCAT" =>
formatNary("",args,prec)
op = "BRACKET" =>
group addBrackets formatFormula(first args, minPrec)
op = "BRACE" =>
group addBraces formatFormula(first args, minPrec)
op = "PAREN" =>
group parenthesize formatFormula(first args, minPrec)
op = "OVERBAR" =>
null args => ""
group concat [formatFormula(first args, minPrec)," bar"]
op = "ROOT" =>
null args => ""
tmp : S := formatFormula(first args, minPrec)
null rest args => group concat ["sqrt ",tmp]
group concat ["midsup adjust(u 1.5 r 9) ",
formatFormula(first rest args, minPrec)," sqrt ",tmp]
op = "SC" =>
formatNary(" labove ",args,prec)
op = "SUB" =>
group concat [formatFormula(first args, minPrec)," sub ",
formatSpecial("AGGLST",rest args,minPrec)]
op = "SUPERSUB" =>
-- variable name
form : List S := [formatFormula(first args, minPrec)]
-- subscripts
args := rest args
null args => concat form
tmp : S := formatFormula(first args, minPrec)
if tmp ^= "" then form := append(form,[" sub ",tmp])$(List S)
-- superscripts
args := rest args
null args => group concat form
tmp : S := formatFormula(first args, minPrec)
if tmp ^= "" then form := append(form,[" sup ",tmp])$(List S)
-- presuperscripts
args := rest args
null args => group concat form
tmp : S := formatFormula(first args, minPrec)
if tmp ^= "" then form := append(form,[" presup ",tmp])$(List S)
-- presubscripts
args := rest args
null args => group concat form
tmp : S := formatFormula(first args, minPrec)
if tmp ^= "" then form := append(form,[" presub ",tmp])$(List S)
group concat form
op = "MATRIX" => formatMatrix rest args
concat ["not done yet for ",op]
formatPlex(op : S, args : L E, prec : I) : S ==
hold : S
p : I := position(op,plexOps)
p < 1 => error "unknown Script Formula Formatter unary op"
opPrec := plexPrecs.p
n : I := #args
(n ^= 2) and (n ^= 3) => error "wrong number of arguments for plex"
s : S :=
op = "SIGMA" => "sum"
op = "PI" => "product"
op = "INTSIGN" => "integral"
op = "INDEFINTEGRAL" => "integral"
"????"
hold := formatFormula(first args,minPrec)
args := rest args
if op ^= "INDEFINTEGRAL" then
if hold ^= "" then
s := concat [s," from",group concat ["\displaystyle ",hold]]
if not null rest args then
hold := formatFormula(first args,minPrec)
if hold ^= "" then
s := concat [s," to",group concat ["\displaystyle ",hold]]
args := rest args
s := concat [s," ",formatFormula(first args,minPrec)]
else
hold := group concat [hold," ",formatFormula(first args,minPrec)]
s := concat [s," ",hold]
if opPrec < prec then s := parenthesize s
group s
formatMatrix(args : L E) : S ==
-- format for args is [[ROW ...],[ROW ...],[ROW ...]]
group addBrackets formatNary(" habove ",args,minPrec)
formatFunction(op : S, args : L E, prec : I) : S ==
group concat [op, " ", parenthesize formatNary(",",args,minPrec)]
formatNullary(op : S) ==
op = "NOTHING" => ""
group concat [op,"()"]
formatUnary(op : S, arg : E, prec : I) ==
p : I := position(op,unaryOps)
p < 1 => error "unknown Script Formula Formatter unary op"
opPrec := unaryPrecs.p
s : S := concat [op,formatFormula(arg,opPrec)]
opPrec < prec => group parenthesize s
op = "-" => s
group s
formatBinary(op : S, args : L E, prec : I) : S ==
p : I := position(op,binaryOps)
p < 1 => error "unknown Script Formula Formatter binary op"
op :=
op = "**" => " sup "
op = "/" => " over "
op = "OVER" => " over "
op
opPrec := binaryPrecs.p
s : S := formatFormula(first args, opPrec)
s := concat [s,op,formatFormula(first rest args, opPrec)]
group
op = " over " => s
opPrec < prec => parenthesize s
s
formatNary(op : S, args : L E, prec : I) : S ==
group formatNaryNoGroup(op, args, prec)
formatNaryNoGroup(op : S, args : L E, prec : I) : S ==
null args => ""
p : I := position(op,naryOps)
p < 1 => error "unknown Script Formula Formatter nary op"
op :=
op = "," => ", @@ "
op = ";" => "; @@ "
op = "*" => blank
op = " " => blank
op = "ROW" => " here "
op
l : L S := nil
opPrec := naryPrecs.p
for a in args repeat
l := concat(op,concat(formatFormula(a,opPrec),l)$L(S))$L(S)
s : S := concat reverse rest l
opPrec < prec => parenthesize s
s
formatFormula(expr,prec) ==
i : Integer
ATOM(expr)$Lisp pretend Boolean =>
str := stringify expr
INTEGERP(expr)$Lisp =>
i := expr : Integer
if (i < 0) or (i > 9) then group str else str
(i := position(str,specialStrings)) > 0 =>
specialStringsInFormula.i
str
l : L E := (expr pretend L E)
null l => blank
op : S := stringify first l
args : L E := rest l
nargs : I := #args
-- special cases
member?(op, specialOps) => formatSpecial(op,args,prec)
member?(op, plexOps) => formatPlex(op,args,prec)
-- nullary case
0 = nargs => formatNullary op
-- unary case
(1 = nargs) and member?(op, unaryOps) =>
formatUnary(op, first args, prec)
-- binary case
(2 = nargs) and member?(op, binaryOps) =>
formatBinary(op, args, prec)
-- nary case
member?(op,naryNGOps) => formatNaryNoGroup(op,args, prec)
member?(op,naryOps) => formatNary(op,args, prec)
op := formatFormula(first l,minPrec)
formatFunction(op,args,prec)
|