/usr/share/axiom-20170501/src/algebra/FPARFRAC.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | )abbrev domain FPARFRAC FullPartialFractionExpansion
++ Author: Manuel Bronstein
++ Date Created: 9 December 1992
++ Date Last Updated: 6 October 1993
++ References:
++ Bron93 Full Partial Fraction Decomposition of Rational Functions
++ Description:
++ Full partial fraction expansion of rational functions
FullPartialFractionExpansion(F, UP) : SIG == CODE where
F : Join(Field, CharacteristicZero)
UP : UnivariatePolynomialCategory F
N ==> NonNegativeInteger
Q ==> Fraction Integer
O ==> OutputForm
RF ==> Fraction UP
SUP ==> SparseUnivariatePolynomial RF
REC ==> Record(exponent: N, center: UP, num: UP)
ODV ==> OrderlyDifferentialVariable Symbol
ODP ==> OrderlyDifferentialPolynomial UP
ODF ==> Fraction ODP
FPF ==> Record(polyPart: UP, fracPart: List REC)
SIG ==> Join(SetCategory, ConvertibleTo RF) with
"+" : (UP, $) -> $
++ p + x returns the sum of p and x
fullPartialFraction : RF -> $
++ fullPartialFraction(f) returns \spad{[p, [[j, Dj, Hj]...]]} such that
++ \spad{f = p(x) + sum_{[j,Dj,Hj] in l} sum_{Dj(a)=0} Hj(a)/(x - a)\^j}.
polyPart : $ -> UP
++ polyPart(f) returns the polynomial part of f.
fracPart : $ -> List REC
++ fracPart(f) returns the list of summands of the fractional part of f.
construct : List REC -> $
++ construct(l) is the inverse of fracPart.
differentiate : $ -> $
++ differentiate(f) returns the derivative of f.
D : $ -> $
++ D(f) returns the derivative of f.
differentiate : ($, N) -> $
++ differentiate(f, n) returns the n-th derivative of f.
D : ($, NonNegativeInteger) -> $
++ D(f, n) returns the n-th derivative of f.
CODE ==> add
Rep := FPF
fullParFrac: (UP, UP, UP, N) -> List REC
outputexp : (O, N) -> O
output : (N, UP, UP) -> O
REC2RF : (UP, UP, N) -> RF
UP2SUP : UP -> SUP
diffrec : REC -> REC
FP2O : List REC -> O
-- create a differential variable
u := new()$Symbol
u0 := makeVariable(u, 0)$ODV
alpha := u::O
x := monomial(1, 1)$UP
xx := x::O
zr := (0$N)::O
construct l == [0, l]
D r == differentiate r
D(r, n) == differentiate(r,n)
polyPart f == f.polyPart
fracPart f == f.fracPart
p:UP + f:$ == [p + polyPart f, fracPart f]
differentiate f ==
differentiate(polyPart f) + construct [diffrec rec for rec in fracPart f]
differentiate(r, n) ==
for i in 1..n repeat r := differentiate r
r
diffrec rec ==
e := rec.exponent
[e + 1, rec.center, - e * rec.num]
convert(f:$):RF ==
ans := polyPart(f)::RF
for rec in fracPart f repeat
ans := ans + REC2RF(rec.center, rec.num, rec.exponent)
ans
UP2SUP p == map((z1:F):RF +-> z1::UP::RF, p)_
$UnivariatePolynomialCategoryFunctions2(F, UP, RF, SUP)
-- returns Trace_k^k(a) (h(a) / (x - a)^n) where d(a) = 0
REC2RF(d, h, n) ==
((m := degree d) = 1) =>
a := - (leadingCoefficient reductum d) / (leadingCoefficient d)
h(a)::UP / (x - a::UP)**n
dd := UP2SUP d
hh := UP2SUP h
aa := monomial(1, 1)$SUP
p := (x::RF::SUP - aa)**n rem dd
rec := extendedEuclidean(p, dd, hh)::Record(coef1:SUP, coef2:SUP)
t := rec.coef1 -- we want Trace_k^k(a)(t) now
ans := coefficient(t, 0)
for i in 1..degree(d)-1 repeat
t := (t * aa) rem dd
ans := ans + coefficient(t, i)
ans
fullPartialFraction f ==
qr := divide(numer f, d := denom f)
qr.quotient + construct concat
[fullParFrac(qr.remainder, d, rec.factor, rec.exponent::N)
for rec in factors squareFree denom f]
fullParFrac(a, d, q, n) ==
ans:List REC := empty()
em := e := d quo (q ** n)
rec := extendedEuclidean(e, q, 1)::Record(coef1:UP,coef2:UP)
bm := b := rec.coef1 -- b = inverse of e modulo q
lvar:List(ODV) := [u0]
um := 1::ODP
un := (u1 := u0::ODP)**n
lval:List(UP) := [q1 := q := differentiate(q0 := q)]
h:ODF := a::ODP / (e * un)
rec := extendedEuclidean(q1, q0, 1)::Record(coef1:UP,coef2:UP)
c := rec.coef1 -- c = inverse of q' modulo q
cm := 1::UP
cn := (c ** n) rem q0
for m in 1..n repeat
p := retract(em * un * um * h)@ODP
pp := retract(eval(p, lvar, lval))@UP
h := inv(m::Q) * differentiate h
q := differentiate q
lvar := concat(makeVariable(u, m), lvar)
lval := concat(inv((m+1)::F) * q, lval)
qq := q0 quo gcd(pp, q0) -- new center
if (degree(qq) > 0) then
ans := concat([(n + 1 - m)::N, qq, (pp * bm * cn * cm) rem qq], ans)
cm := (c * cm) rem q0 -- cm = c**m modulo q now
um := u1 * um -- um = u**m now
em := e * em -- em = e**{m+1} now
bm := (b * bm) rem q0 -- bm = b**{m+1} modulo q now
ans
coerce(f:$):O ==
ans := FP2O(l := fracPart f)
zero?(p := polyPart f) =>
empty? l => (0$N)::O
ans
empty? l => p::O
p::O + ans
FP2O l ==
empty? l => empty()
rec := first l
ans := output(rec.exponent, rec.center, rec.num)
for rec in rest l repeat
ans := ans + output(rec.exponent, rec.center, rec.num)
ans
output(n, d, h) ==
(degree d) = 1 =>
a := - leadingCoefficient(reductum d) / leadingCoefficient(d)
h(a)::O / outputexp((x - a::UP)::O, n)
sum(outputForm(makeSUP h, alpha) / outputexp(xx - alpha, n),
outputForm(makeSUP d, alpha) = zr)
outputexp(f, n) ==
(n = 1) => f
f ** (n::O)
|