This file is indexed.

/usr/share/axiom-20170501/src/algebra/FR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
)abbrev domain FR Factored
++ Author: Robert S. Sutor, J. Grabmeier
++ Date Created: 1985
++ Change History: 21 Jan 1991 (J Grabmeier) 16 Aug 1994 (R S Sutor)
++ Description:
++ \spadtype{Factored} creates a domain whose objects are kept in
++ factored form as long as possible.  Thus certain operations like
++ multiplication and gcd are relatively easy to do.  Others, like
++ addition require somewhat more work, and unless the argument
++ domain provides a factor function, the result may not be
++ completely factored.  Each object consists of a unit and a list of
++ factors, where a factor has a member of R (the "base"), and
++ exponent and a flag indicating what is known about the base.  A
++ flag may be one of "nil", "sqfr", "irred" or "prime", which respectively mean
++ that nothing is known about the base, it is square-free, it is
++ irreducible, or it is prime.  The current
++ restriction to integral domains allows simplification to be
++ performed without worrying about multiplication order.

Factored(R) : SIG == CODE where
  R : IntegralDomain

  fUnion ==> Union("nil", "sqfr", "irred", "prime")
  FF     ==> Record(flg: fUnion, fctr: R, xpnt: Integer)
  SRFE   ==> Set(Record(factor:R, exponent:Integer))

  SIG ==> Join(IntegralDomain, DifferentialExtension R, Algebra R,
                   FullyEvalableOver R, FullyRetractableTo R) with
   expand : % -> R
    ++ expand(f) multiplies the unit and factors together, yielding an
    ++ "unfactored" object. Note: this is purposely not called 
    ++ \spadfun{coerce} which would cause the interpreter to do this 
    ++ automatically.
    ++
    ++X f:=nilFactor(y-x,3)
    ++X expand(f)

   exponent : % -> Integer
    ++ exponent(u) returns the exponent of the first factor of
    ++ \spadvar{u}, or 0 if the factored form consists solely of a unit.
    ++
    ++X f:=nilFactor(y-x,3)
    ++X exponent(f)

   makeFR : (R, List FF) -> %
    ++ makeFR(unit,listOfFactors) creates a factored object (for
    ++ use by factoring code).
    ++
    ++X f:=nilFactor(x-y,3)
    ++X g:=factorList f
    ++X makeFR(z,g)

   factorList : % -> List FF
    ++ factorList(u) returns the list of factors with flags (for
    ++ use by factoring code).
    ++
    ++X f:=nilFactor(x-y,3)
    ++X factorList f

   nilFactor : (R, Integer) -> %
    ++ nilFactor(base,exponent) creates a factored object with
    ++ a single factor with no information about the kind of
    ++ base (flag = "nil").
    ++
    ++X nilFactor(24,2)
    ++X nilFactor(x-y,3)

   factors : % -> List Record(factor:R, exponent:Integer)
    ++ factors(u) returns a list of the factors in a form suitable
    ++ for iteration. That is, it returns a list where each element
    ++ is a record containing a base and exponent.  The original
    ++ object is the product of all the factors and the unit (which
    ++ can be extracted by \axiom{unit(u)}).
    ++
    ++X f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4
    ++X factors f
    ++X g:=makeFR(z,factorList f)
    ++X factors g

   irreducibleFactor : (R, Integer) -> %
    ++ irreducibleFactor(base,exponent) creates a factored object with
    ++ a single factor whose base is asserted to be irreducible
    ++ (flag = "irred").
    ++
    ++X a:=irreducibleFactor(3,1)
    ++X nthFlag(a,1)

   nthExponent : (%, Integer) -> Integer
    ++ nthExponent(u,n) returns the exponent of the nth factor of
    ++ \spadvar{u}.  If \spadvar{n} is not a valid index for a factor
    ++ (for example, less than 1 or too big), 0 is returned.
    ++
    ++X a:=factor 9720000
    ++X nthExponent(a,2)

   nthFactor : (%,Integer) -> R
    ++ nthFactor(u,n) returns the base of the nth factor of
    ++ \spadvar{u}.  If \spadvar{n} is not a valid index for a factor
    ++ (for example, less than 1 or too big), 1 is returned.  If
    ++ \spadvar{u} consists only of a unit, the unit is returned.
    ++
    ++X a:=factor 9720000
    ++X nthFactor(a,2)

   nthFlag : (%,Integer) -> fUnion
    ++ nthFlag(u,n) returns the information flag of the nth factor of
    ++ \spadvar{u}.  If \spadvar{n} is not a valid index for a factor
    ++ (for example, less than 1 or too big), "nil" is returned.
    ++
    ++X a:=factor 9720000
    ++X nthFlag(a,2)

   numberOfFactors : %  -> NonNegativeInteger
    ++ numberOfFactors(u) returns the number of factors in \spadvar{u}.
    ++
    ++X a:=factor 9720000
    ++X numberOfFactors a

   primeFactor : (R,Integer) -> %
    ++ primeFactor(base,exponent) creates a factored object with
    ++ a single factor whose base is asserted to be prime
    ++ (flag = "prime").
    ++
    ++X a:=primeFactor(3,4)
    ++X nthFlag(a,1)

   sqfrFactor : (R,Integer) -> %
    ++ sqfrFactor(base,exponent) creates a factored object with
    ++ a single factor whose base is asserted to be square-free
    ++ (flag = "sqfr").
    ++
    ++X a:=sqfrFactor(3,5)
    ++X nthFlag(a,1)

   flagFactor : (R,Integer, fUnion) -> %
    ++ flagFactor(base,exponent,flag) creates a factored object with
    ++ a single factor whose base is asserted to be properly
    ++ described by the information flag.

   unit : % -> R
    ++ unit(u) extracts the unit part of the factorization.
    ++
    ++X f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4
    ++X unit f
    ++X g:=makeFR(z,factorList f)
    ++X unit g

   unitNormalize : % -> %
    ++ unitNormalize(u) normalizes the unit part of the factorization.
    ++ For example, when working with factored integers, this operation will
    ++ ensure that the bases are all positive integers.

   map : (R -> R, %) -> %
    ++ map(fn,u) maps the function \userfun{fn} across the factors of
    ++ \spadvar{u} and creates a new factored object. Note: this clears
    ++ the information flags (sets them to "nil") because the effect of
    ++ \userfun{fn} is clearly not known in general.
    ++
    ++X m(a:Factored Polynomial Integer):Factored Polynomial Integer == a^2
    ++X f:=x*y^3-3*x^2*y^2+3*x^3*y-x^4
    ++X map(m,f)
    ++X g:=makeFR(z,factorList f)
    ++X map(m,g)

    -- the following operations are conditional on R

   if R has GcdDomain then GcdDomain

   if R has RealConstant then RealConstant

   if R has UniqueFactorizationDomain then UniqueFactorizationDomain

   if R has ConvertibleTo InputForm then ConvertibleTo InputForm

   if R has IntegerNumberSystem then

      rational? : % -> Boolean
        ++ rational?(u) tests if \spadvar{u} is actually a
        ++ rational number (see \spadtype{Fraction Integer}).

      rational : % -> Fraction Integer
        ++ rational(u) assumes spadvar{u} is actually a rational number
        ++ and does the conversion to rational number
        ++ (see \spadtype{Fraction Integer}).

      rationalIfCan : % -> Union(Fraction Integer, "failed")
        ++ rationalIfCan(u) returns a rational number if u
        ++ really is one, and "failed" otherwise.

   if R has Eltable(%, %) then Eltable(%, %)

   if R has Evalable(%) then Evalable(%)

   if R has InnerEvalable(Symbol, %) then InnerEvalable(Symbol, %)

  CODE ==> add

  -- Representation:
    -- Note: exponents are allowed to be integers so that some special cases
    -- may be used in simplications
    Rep := Record(unt:R, fct:List FF)

    if R has ConvertibleTo InputForm then
      convert(x:%):InputForm ==
        empty?(lf := reverse factorList x) => convert(unit x)@InputForm
        l := empty()$List(InputForm)
        for rec in lf repeat
          ((rec.fctr) = 1) => l
          iFactor : InputForm := _
            binary( convert("::" :: Symbol)@InputForm, _
                    [convert(rec.fctr)@InputForm, _
                    (devaluate R)$Lisp :: InputForm ]$List(InputForm) )
          iExpon  : InputForm := convert(rec.xpnt)@InputForm
          iFun    : List InputForm :=
            rec.flg case "nil" =>
               [convert("nilFactor" :: Symbol)@InputForm, iFactor, _
                 iExpon]$List(InputForm)
            rec.flg case "sqfr" =>
               [convert("sqfrFactor" :: Symbol)@InputForm, iFactor, _
                 iExpon]$List(InputForm)
            rec.flg case "prime" =>
               [convert("primeFactor" :: Symbol)@InputForm, iFactor, _
                 iExpon]$List(InputForm)
            rec.flg case "irred" =>
               [convert("irreducibleFactor" :: Symbol)@InputForm, iFactor, _
                 iExpon]$List(InputForm)
            nil$List(InputForm)
          l := concat( iFun pretend InputForm, l )
        empty? l => convert(unit x)@InputForm
        if unit x ^= 1 then l := concat(convert(unit x)@InputForm,l)
        empty? rest l => first l
        binary(convert(_*::Symbol)@InputForm, l)@InputForm

    orderedR? := R has OrderedSet

  -- Private function signatures:
    reciprocal              : % -> %

    qexpand                 : % -> R

    negexp?                 : % -> Boolean

    SimplifyFactorization   : List FF -> List FF

    LispLessP               : (FF, FF) -> Boolean

    mkFF                    : (R, List FF) -> %

    SimplifyFactorization1  : (FF, List FF) -> List FF

    stricterFlag            : (fUnion, fUnion) -> fUnion

    nilFactor(r, i)      == flagFactor(r, i, "nil")

    sqfrFactor(r, i)     == flagFactor(r, i, "sqfr")

    irreducibleFactor(r, i)      == flagFactor(r, i, "irred")

    primeFactor(r, i)    == flagFactor(r, i, "prime")

    unit? u              == (empty? u.fct) and (not zero? u.unt)

    factorList u         == u.fct

    unit u               == u.unt

    numberOfFactors u    == # u.fct

    0                    == [1, [["nil", 0, 1]$FF]]

    zero? u              == # u.fct = 1 and
                             (first u.fct).flg case "nil" and
                              zero? (first u.fct).fctr and
                               (u.unt = 1)

    1                    == [1, empty()]

    one? u               == empty? u.fct and u.unt = 1

    mkFF(r, x)           == [r, x]

    coerce(j:Integer):%  == (j::R)::%

    characteristic()     == characteristic()$R

    i:Integer * u:%      == (i :: %) * u

    r:R * u:%            == (r :: %) * u

    factors u            == [[fe.fctr, fe.xpnt] for fe in factorList u]

    expand u             == retract u

    negexp? x           == "or"/[negative?(y.xpnt) for y in factorList x]

    makeFR(u, l) ==
        unitNormalize mkFF(u, SimplifyFactorization l)

    if R has IntegerNumberSystem then

      rational? x     == true

      rationalIfCan x == rational x

      rational x ==
        convert(unit x)@Integer *
           _*/[(convert(f.fctr)@Integer)::Fraction(Integer)
                                    ** f.xpnt for f in factorList x]

    if R has Eltable(R, R) then

      elt(x:%, v:%) == x(expand v)

    if R has Evalable(R) then

      eval(x:%, l:List Equation %) ==
        eval(x,[expand lhs e = expand rhs e for e in l]$List(Equation R))

    if R has InnerEvalable(Symbol, R) then

      eval(x:%, ls:List Symbol, lv:List %) ==
        eval(x, ls, [expand v for v in lv]$List(R))

    if R has RealConstant then

      convert(x:%):Float ==
        convert(unit x)@Float *
                _*/[convert(f.fctr)@Float ** f.xpnt for f in factorList x]

      convert(x:%):DoubleFloat ==
        convert(unit x)@DoubleFloat *
          _*/[convert(f.fctr)@DoubleFloat ** f.xpnt for f in factorList x]

    u:% * v:% ==
      zero? u or zero? v => 0
      (u = 1) => v
      (v = 1) => u
      mkFF(unit u * unit v,
          SimplifyFactorization concat(factorList u, copy factorList v))

    u:% ** n:NonNegativeInteger ==
      mkFF(unit(u)**n, [[x.flg, x.fctr, n * x.xpnt] for x in factorList u])

    SimplifyFactorization x ==
      empty? x => empty()
      x := sort_!(LispLessP, x)
      x := SimplifyFactorization1(first x, rest x)
      if orderedR? then x := sort_!(LispLessP, x)
      x

    SimplifyFactorization1(f, x) ==
      empty? x =>
        zero?(f.xpnt) => empty()
        list f
      f1 := first x
      f.fctr = f1.fctr =>
        SimplifyFactorization1([stricterFlag(f.flg, f1.flg),
                                      f.fctr, f.xpnt + f1.xpnt], rest x)
      l := SimplifyFactorization1(first x, rest x)
      zero?(f.xpnt) => l
      concat(f, l)


    coerce(x:%):OutputForm ==
      empty?(lf := reverse factorList x) => (unit x)::OutputForm
      l := empty()$List(OutputForm)
      for rec in lf repeat
        ((rec.fctr) = 1) => l
        ((rec.xpnt) = 1) =>
          l := concat(rec.fctr :: OutputForm, l)
        l := concat(rec.fctr::OutputForm ** rec.xpnt::OutputForm, l)
      empty? l => (unit x) :: OutputForm
      e :=
        empty? rest l => first l
        reduce(_*, l)
      1 = unit x => e
      (unit x)::OutputForm * e

    retract(u:%):R ==
      negexp? u =>  error "Negative exponent in factored object"
      qexpand u

    qexpand u ==
      unit u *
         _*/[y.fctr ** (y.xpnt::NonNegativeInteger) for y in factorList u]

    retractIfCan(u:%):Union(R, "failed") ==
      negexp? u => "failed"
      qexpand u

    LispLessP(y, y1) ==
      orderedR? => y.fctr < y1.fctr
      GGREATERP(y.fctr, y1.fctr)$Lisp => false
      true

    stricterFlag(fl1, fl2) ==
      fl1 case "prime"   => fl1
      fl1 case "irred"   =>
        fl2 case "prime" => fl2
        fl1
      fl1 case "sqfr"    =>
        fl2 case "nil"   => fl1
        fl2
      fl2

    if R has IntegerNumberSystem
      then
        coerce(r:R):% ==
          factor(r)$IntegerFactorizationPackage(R) pretend %
      else
        if R has UniqueFactorizationDomain
          then
            coerce(r:R):% ==
              zero? r => 0
              unit? r => mkFF(r, empty())
              unitNormalize(squareFree(r) pretend %)
          else
            coerce(r:R):% ==
              (r = 1) => 1
              unitNormalize mkFF(1, [["nil", r, 1]$FF])

    u = v ==
      (unit u = unit v) and # u.fct = # v.fct and
        set(factors u)$SRFE =$SRFE set(factors v)$SRFE

    - u ==
      zero? u => u
      mkFF(- unit u, factorList u)

    recip u  ==
      not empty? factorList u => "failed"
      (r := recip unit u) case "failed" => "failed"
      mkFF(r::R, empty())

    reciprocal u ==
      mkFF((recip unit u)::R,
                    [[y.flg, y.fctr, - y.xpnt]$FF for y in factorList u])

    exponent u ==  -- exponent of first factor
      empty?(fl := factorList u) or zero? u => 0
      first(fl).xpnt

    nthExponent(u, i) ==
      l := factorList u
      zero? u or i < 1 or i > #l => 0
      (l.(minIndex(l) + i - 1)).xpnt

    nthFactor(u, i) ==
      zero? u => 0
      zero? i => unit u
      l := factorList u
      negative? i or i > #l => 1
      (l.(minIndex(l) + i - 1)).fctr

    nthFlag(u, i) ==
      l := factorList u
      zero? u or i < 1 or i > #l => "nil"
      (l.(minIndex(l) + i - 1)).flg

    flagFactor(r, i, fl) ==
      zero? i => 1
      zero? r => 0
      unitNormalize mkFF(1, [[fl, r, i]$FF])

    differentiate(u:%, deriv: R -> R) ==
      ans := deriv(unit u) * ((u exquo unit(u)::%)::%)
      ans + (_+/[fact.xpnt * deriv(fact.fctr) *
       ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u])

    map(fn, u) ==
     fn(unit u) * _*/[irreducibleFactor(fn(f.fctr),f.xpnt)_
         for f in factorList u]

    u exquo v ==
      empty?(x1 := factorList v) =>  unitNormal(retract v).associate *  u
      empty? factorList u => "failed"
      v1 := u * reciprocal v
      goodQuotient:Boolean := true
      while (goodQuotient and (not empty? x1)) repeat
        if x1.first.xpnt < 0
          then goodQuotient := false
          else x1 := rest x1
      goodQuotient => v1
      "failed"

    unitNormal u == -- does a bunch of work, but more canonical
      (ur := recip(un := unit u)) case "failed" => [1, u, 1]
      as := ur::R
      vl := empty()$List(FF)
      for x in factorList u repeat
        ucar := unitNormal(x.fctr)
        e := abs(x.xpnt)::NonNegativeInteger
        if x.xpnt < 0
          then  --  associate is recip of unit
            un := un * (ucar.associate ** e)
            as := as * (ucar.unit ** e)
          else
            un := un * (ucar.unit ** e)
            as := as * (ucar.associate ** e)
        if not ((ucar.canonical) = 1) then
          vl := concat([x.flg, ucar.canonical, x.xpnt], vl)
      [mkFF(un, empty()), mkFF(1, reverse_! vl), mkFF(as, empty())]

    unitNormalize u ==
      uca := unitNormal u
      mkFF(unit(uca.unit)*unit(uca.canonical),factorList(uca.canonical))

    if R has GcdDomain then

      u + v ==
        zero? u => v
        zero? v => u
        v1 := reciprocal(u1 := gcd(u, v))
        (expand(u * v1) + expand(v * v1)) * u1

      gcd(u, v) ==
        (u = 1) or (v = 1) => 1
        zero? u => v
        zero? v => u
        f1 := empty()$List(Integer)  -- list of used factor indices in x
        f2 := f1      -- list of indices corresponding to a given factor
        f3 := empty()$List(List Integer)    -- list of f2-like lists
        x := concat(factorList u, factorList v)
        for i in minIndex x .. maxIndex x repeat
          if not member?(i, f1) then
            f1 := concat(i, f1)
            f2 := [i]
            for j in i+1..maxIndex x repeat
              if x.i.fctr = x.j.fctr then
                  f1 := concat(j, f1)
                  f2 := concat(j, f2)
            f3 := concat(f2, f3)
        x1 := empty()$List(FF)
        while not empty? f3 repeat
          f1 := first f3
          if #f1 > 1 then
            i  := first f1
            y  := copy x.i
            f1 := rest f1
            while not empty? f1 repeat
              i := first f1
              if x.i.xpnt < y.xpnt then y.xpnt := x.i.xpnt
              f1 := rest f1
            x1 := concat(y, x1)
          f3 := rest f3
        if orderedR? then x1 := sort_!(LispLessP, x1)
        mkFF(1, x1)

    else   -- R not a GCD domain

      u + v ==
        zero? u => v
        zero? v => u
        irreducibleFactor(expand u + expand v, 1)

    if R has UniqueFactorizationDomain then

      prime? u ==
        not(empty?(l := factorList u)) and (empty? rest l) and
                       ((l.first.xpnt) = 1) and (l.first.flg case "prime")