This file is indexed.

/usr/share/axiom-20170501/src/algebra/FRAC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
)abbrev domain FRAC Fraction
++ Author: Mark Botch
++ Date Last Updated: 12 February 1992
++ Basic Functions: Field, numer, denom
++ References:
++ Corl00 According to Abramowitz and Stegun or arccoth needn't be Uncouth
++ Fate01a A Critique of OpenMath and Thoughts on Encoding Mathematics
++ Description:
++ Fraction takes an IntegralDomain S and produces
++ the domain of Fractions with numerators and denominators from S.
++ If S is also a GcdDomain, then gcd's between numerator and
++ denominator will be cancelled during all operations.

Fraction(S) : SIG == CODE where
  S : IntegralDomain

  SIG ==> QuotientFieldCategory S with 

       if S has IntegerNumberSystem and S has OpenMath then OpenMath

       if S has canonical and S has GcdDomain and S has canonicalUnitNormal
          then canonical
           ++ \spad{canonical} means that equal elements are in fact identical.

  CODE ==> LocalAlgebra(S, S, S) add

    Rep:= Record(num:S, den:S)

    coerce(d:S):% == [d,1]

    zero?(x:%) == zero? x.num

    if S has GcdDomain and S has canonicalUnitNormal then

      retract(x:%):S ==
        ((x.den) = 1) => x.num
        error "Denominator not equal to 1"

      retractIfCan(x:%):Union(S, "failed") ==
        ((x.den) = 1) => x.num
        "failed"
    else

      retract(x:%):S ==
        (a:= x.num exquo x.den) case "failed" =>
           error "Denominator not equal to 1"
        a

      retractIfCan(x:%):Union(S,"failed") == x.num exquo x.den

    if S has EuclideanDomain then
      wholePart x ==
        ((x.den) = 1) => x.num
        x.num quo x.den

    if S has IntegerNumberSystem then

      floor x ==
        ((x.den) = 1) => x.num
        x < 0 => -ceiling(-x)
        wholePart x

      ceiling x ==
        ((x.den) = 1) => x.num
        x < 0 => -floor(-x)
        1 + wholePart x

      if S has OpenMath then
        -- TODO: somwhere this file does something which redefines the division
        -- operator. Doh!

        writeOMFrac(dev: OpenMathDevice, x: %): Void ==
          OMputApp(dev)
          OMputSymbol(dev, "nums1", "rational")
          OMwrite(dev, x.num, false)
          OMwrite(dev, x.den, false)
          OMputEndApp(dev)

        OMwrite(x: %): String ==
          s: String := ""
          sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
          dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
          OMputObject(dev)
          writeOMFrac(dev, x)
          OMputEndObject(dev)
          OMclose(dev)
          s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
          s

        OMwrite(x: %, wholeObj: Boolean): String ==
          s: String := ""
          sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
          dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
          if wholeObj then
            OMputObject(dev)
          writeOMFrac(dev, x)
          if wholeObj then
            OMputEndObject(dev)
          OMclose(dev)
          s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
          s

        OMwrite(dev: OpenMathDevice, x: %): Void ==
          OMputObject(dev)
          writeOMFrac(dev, x)
          OMputEndObject(dev)

        OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
          if wholeObj then
            OMputObject(dev)
          writeOMFrac(dev, x)
          if wholeObj then
            OMputEndObject(dev)

    if S has GcdDomain then

      cancelGcd: % -> S

      normalize: % -> %

      normalize x ==
        zero?(x.num) => 0
        ((x.den) = 1) => x
        uca := unitNormal(x.den)
        zero?(x.den := uca.canonical) => error "division by zero"
        x.num := x.num * uca.associate
        x

      recip x ==
        zero?(x.num) => "failed"
        normalize [x.den, x.num]

      cancelGcd x ==
        ((x.den) = 1) => x.den
        d := gcd(x.num, x.den)
        xn := x.num exquo d
        xn case "failed" =>
          error "gcd not gcd in QF cancelGcd (numerator)"
        xd := x.den exquo d
        xd case "failed" =>
          error "gcd not gcd in QF cancelGcd (denominator)"
        x.num := xn :: S
        x.den := xd :: S
        d

      nn:S / dd:S ==
        zero? dd => error "division by zero"
        cancelGcd(z := [nn, dd])
        normalize z

      x + y  ==
        zero? y => x
        zero? x => y
        z := [x.den,y.den]
        d := cancelGcd z
        g := [z.den * x.num + z.num * y.num, d]
        cancelGcd g
        g.den := g.den * z.num * z.den
        normalize g

      -- We can not rely on the defaulting mechanism
      -- to supply a definition for -, even though this
      -- definition would do, for thefollowing reasons:
      --  1) The user could have defined a subtraction
      --     in Localize, which would not work for
      --     QuotientField;
      --  2) even if he doesn't, the system currently
      --     places a default definition in Localize,
      --     which uses Localize's +, which does not
      --     cancel gcds
      x - y  ==
        zero? y => x
        z := [x.den, y.den]
        d := cancelGcd z
        g := [z.den * x.num - z.num * y.num, d]
        cancelGcd g
        g.den := g.den * z.num * z.den
        normalize g

      x:% * y:%  ==
        zero? x or zero? y => 0
        (x = 1) => y
        (y = 1) => x
        (x, y) := ([x.num, y.den], [y.num, x.den])
        cancelGcd x; cancelGcd y;
        normalize [x.num * y.num, x.den * y.den]

      n:Integer * x:% ==
        y := [n::S, x.den]
        cancelGcd y
        normalize [x.num * y.num, y.den]

      nn:S * x:% ==
        y := [nn, x.den]
        cancelGcd y
        normalize [x.num * y.num, y.den]

      differentiate(x:%, deriv:S -> S) ==
        y := [deriv(x.den), x.den]
        d := cancelGcd(y)
        y.num := deriv(x.num) * y.den - x.num * y.num
        (d, y.den) := (y.den, d)
        cancelGcd y
        y.den := y.den * d * d
        normalize y

      if S has canonicalUnitNormal then

        x = y == (x.num = y.num) and (x.den = y.den)

        one? x == ((x.num) = 1) and ((x.den) = 1)
                  -- again assuming canonical nature of representation

    else

      nn:S/dd:S == if zero? dd then error "division by zero" else [nn,dd]

      recip x ==
        zero?(x.num) => "failed"
        [x.den, x.num]

    if (S has RetractableTo Fraction Integer) then

      retract(x:%):Fraction(Integer) == retract(retract(x)@S)

      retractIfCan(x:%):Union(Fraction Integer, "failed") ==
        (u := retractIfCan(x)@Union(S, "failed")) case "failed" => "failed"
        retractIfCan(u::S)

    else if (S has RetractableTo Integer) then

      retract(x:%):Fraction(Integer) ==
        retract(numer x) / retract(denom x)

      retractIfCan(x:%):Union(Fraction Integer, "failed") ==
        (n := retractIfCan numer x) case "failed" => "failed"
        (d := retractIfCan denom x) case "failed" => "failed"
        (n::Integer) / (d::Integer)

    QFP ==> SparseUnivariatePolynomial %

    DP ==> SparseUnivariatePolynomial S

    import UnivariatePolynomialCategoryFunctions2(%,QFP,S,DP)

    import UnivariatePolynomialCategoryFunctions2(S,DP,%,QFP)

    if S has GcdDomain then

       gcdPolynomial(pp,qq) ==
          zero? pp => qq
          zero? qq => pp
          zero? degree pp or zero? degree qq => 1
          denpp:="lcm"/[denom u for u in coefficients pp]
          ppD:DP:=map(x+->retract(x*denpp),pp)
          denqq:="lcm"/[denom u for u in coefficients qq]
          qqD:DP:=map(x+->retract(x*denqq),qq)
          g:=gcdPolynomial(ppD,qqD)
          zero? degree g => 1
          ((lc:=leadingCoefficient g) = 1) => map(x+->x::%,g)
          map(x+->x/lc,g)

    if (S has PolynomialFactorizationExplicit) then
       -- we'll let the solveLinearPolynomialEquations operator
       -- default from Field
       pp,qq: QFP
       lpp: List QFP
       import Factored SparseUnivariatePolynomial %

       if S has CharacteristicNonZero then

          if S has canonicalUnitNormal and S has GcdDomain then

             charthRoot x ==
               n:= charthRoot x.num
               n case "failed" => "failed"
               d:=charthRoot x.den
               d case "failed" => "failed"
               n/d

          else

             charthRoot x ==
               -- to find x = p-th root of n/d
               -- observe that xd is p-th root of n*d**(p-1)
               ans:=charthRoot(x.num *
                      (x.den)**(characteristic()$%-1)::NonNegativeInteger)
               ans case "failed" => "failed"
               ans / x.den

          clear: List % -> List S

          clear l ==
             d:="lcm"/[x.den for x in l]
             [ x.num * (d exquo x.den)::S for x in l]

          mat: Matrix %

          conditionP mat ==
            matD: Matrix S
            matD:= matrix [ clear l for l in listOfLists mat ]
            ansD := conditionP matD
            ansD case "failed" => "failed"
            ansDD:=ansD :: Vector(S)
            [ ansDD(i)::% for i in 1..#ansDD]$Vector(%)

       factorPolynomial(pp) ==
          zero? pp => 0
          denpp:="lcm"/[denom u for u in coefficients pp]
          ppD:DP:=map(x+->retract(x*denpp),pp)
          ff:=factorPolynomial ppD
          den1:%:=denpp::%
          lfact:List Record(flg:Union("nil", "sqfr", "irred", "prime"),
                             fctr:QFP, xpnt:Integer)
          lfact:= [[w.flg,
                    if leadingCoefficient w.fctr =1 then 
                           map(x+->x::%,w.fctr)
                    else (lc:=(leadingCoefficient w.fctr)::%;
                           den1:=den1/lc**w.xpnt;
                            map(x+->x::%/lc,w.fctr)),
                   w.xpnt] for w in factorList ff]
          makeFR(map(x+->x::%/den1,unit(ff)),lfact)

       factorSquareFreePolynomial(pp) ==
          zero? pp => 0
          degree pp = 0 => makeFR(pp,empty())
          lcpp:=leadingCoefficient pp
          pp:=pp/lcpp
          denpp:="lcm"/[denom u for u in coefficients pp]
          ppD:DP:=map(x+->retract(x*denpp),pp)
          ff:=factorSquareFreePolynomial ppD
          den1:%:=denpp::%/lcpp
          lfact:List Record(flg:Union("nil", "sqfr", "irred", "prime"),
                             fctr:QFP, xpnt:Integer)
          lfact:= [[w.flg,
                    if leadingCoefficient w.fctr =1 then 
                           map(x+->x::%,w.fctr)
                    else (lc:=(leadingCoefficient w.fctr)::%;
                           den1:=den1/lc**w.xpnt;
                            map(x+->x::%/lc,w.fctr)),
                   w.xpnt] for w in factorList ff]
          makeFR(map(x+->x::%/den1,unit(ff)),lfact)